f(x) = 2( 1/2 *sinx + √3/2 * cosx)
= 2 (cos(π/3) sinx + sin(π/3)cosx)
= 2 Sin(x + π/3) 逆用和差化积
∴ 值域是 [-2,2]
单调减区间
2kπ + π/2 <= x + π/3 <= 2kπ +3/2 * π
化简一下就是了
(3)
相当于
sin(x1 + π/3) = sin (x2 + π/3)
=> sin(x1 + π/3) - sin (x2 + π/3) = 0
=> 2 cos(x1 + π/3 + x2 + π/3)*sin(x1 + π/3 - x2 - π/3) = 0
=> cos(x1 + x2 + 2/3 * π) *sin(x1 - x2) = 0
所以有
cos(x1 + x2 + 2/3 * π) = 0
或者
sin(x1 - x2) = 0
又因为x1不等于x2
且x1,x2 ∈ A
所以sin(x1 - x2) ≠ 0
那么只有cos(x1 + x2 + 2/3 * π) =0
所以x1 + x2 + 2/3 * π = 3/2 * π
x1 + x2 = 5/6 * π
原式=2sinx(x+π/3)
1) 值域为(-2,2)
2)因为sinx减区间为[2kπ+π/2,2kπ+3π/2],所以f(x)减区间为[π/6,7π/6]
3)满足条件的有π/6和7π/6