某中学组织七年级同学参加校外活动,原计划租用40座客车若干辆,但有20人没有座位;如果租用50座客车,则

2024-12-03 07:32:41
推荐回答(3个)
回答(1):

初一下册应用题
1.某班同学外出春游时要拍合影留念,若一张彩色底片要0.57元,冲印一张要0.35元,每人预定一张,出钱不超过0.45元,问参加合影的同学至少有几人?
2.某单位要印制一批论文集,甲印刷公司提出:每本论文印刷收费20元,另收封面设计费,插图费,排版费等总共2000元。乙印刷公司提出:每本论文收费30元,不收封面设计费及其他费用。
(1)印制多少本论文集时,选择甲印刷公司比较合算?
(2)印制多少本论文集时,选择乙印刷公司比较合算?
(3)印制多少本论文集时,两公司都一样?

1.现在对某商品降价百分之十促销,为了使销售总金额不变,销售量要比按原价销售时增加百分之几? 解:1÷(1-10%)-1 =1/9 ≈11.11% 答:增加11.11% 2.甲对乙说:"当我是你现在的年龄,你才4岁."乙对甲说:"当我是你现在的年龄时,你将61岁."问甲,乙现在的年龄各是多少? 解:设甲现在x岁,乙现在y岁。 根据题意: x-y=y-4, x-y=61-x 解出:x=42,y=23 答:甲42岁,乙23岁。 3.有奇数个杯子杯口都向下,每次同时翻动偶数个杯子称为一次运动,问能否经过若干次运动使全部的杯子杯口朝上?为什么? 不能.因为当剩下最后一个杯子时是奇数,当然不能做一次运动啦. 4.一批文稿,如果甲抄30小时完成,乙抄20小时完成,现由甲抄3小时后该为乙抄余下部分,问乙尚需抄多少小时?(列方程解) 设乙尚需抄X小时 1/30*3+X*1/20=1 解得X=18 5.甲乙两人分别从相距60千米的AB两地骑摩托车出发去某地,甲在乙后面,甲每小时骑80千米,乙每小时骑45千米,若甲比乙早30分出发,问甲出发经过多长时间可以追上乙? 1/2*80=40千米 (60-40)/(80-45)=4/7 4/7+1/2=15/14 设X小时后追上 80X=45*(X-1/2)+60 解得X=15/14 6.某飞机原定以每小时495千米的速度飞往目的地,后因任务紧急,飞行速度提高到每小时660千米,结果提前1小时到达,问总的航程是多少千米? x/495-x/660=1 7.一瓶酱油先吃去0.6千克,后又吃去余下的3/5,瓶中酱油还有0.8千克。这瓶酱油原来有多少千克? (X-0。6)*(1-3/5)=0。8 8.一列货车和一列客车同时同地背向而行,当货车行5小时,客车行6小时后,两车相距568千米。已知货车每小时比客车快8千米。客车每小时行多少千米? 设客车是X,则货车是X+8 5(X+8)+6X=568 9.李欣骑自行车,刘强骑摩托车,同时从相距60千米的两地出发相向而行。途中相遇后继续前进背向而行。在出发后6小时,他们相距240千米。已知李欣每小时行18千米,求刘强每小时行多少千米? 6(18+X)=60+240 10.甲、乙两人相距22.5千米,并分别以2.5千米/时与5千米/时的速度同时相向而行,同时甲所带的小狗以7.5千米/时的速度奔向乙,小狗遇乙后立即回头奔向甲,遇甲后又奔向乙……直到甲、乙两人相遇,求小狗所走的路程。 .因为小狗行走的时间=甲乙行走的时间 所以 小狗的路程=小狗的时间*小狗的速度 =甲乙的时间*小狗的速度 =22.5/(2.5+5)*7.5 =22.5(千米)甲、乙二人分别后,沿着铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒;然后在乙身旁开过,用了17秒,已知两人的步行速度都是3.6秒/时,这列火车有多长? 解:第一步,求出火车速度 设火车车速为X,两人的步行速度都是3.6千米/时(3.6千米/时=3.6米/秒) 则,据题意得方程(X+3.6)×15=(X-3.6)×17 解方程得 X=57.6米/秒; 第二步,求出火车长度 因为:火车速度为57.6米/秒,两人的步行速度都是3.6千米/时(3.6千米/时=3.6米/秒) 所以:火车长度=(57.6+3.6)×15 =918(米) (或)火车长度=(57.6-3.6)×17 =918(米) 答:这列火车长918米。 1、已知:a>b,则-3a+5____-3b+5。
2、用不等式表示“a 是非正数”为____。
3、不等式 3x-2>4 的解集是____。
4、在数轴上表示:x≥-1。
5、不等式组 的解集是____。
6、不等式-3≤5-2x<3的正整数解集是____。
7、三角形的三边长分别是 6、9、x,则 x 的取值范围是____。
8、若 a<0,则不等式 ax+b>0 的解集是____。
9、三个连续自然数的和不大于 15,这样的自然数组有____组。
10、关于 x 的方程 3x+k=4 的解是正数,则 K____。
11、某商品原价 5 元,如果跌价 x% 后,仍不低于 4 元,那么x 的取值范围为_____。
12、若-a>a,则 a 必为( )
A、正整数 B、负整数 C、正数 D、负数
13、若 a-b<0,则下列各式中一定正确的是( )
A、a>b B、ab>0 C、 <0 D、-a>-b
14、若不等式组 的解为 x>4,则 a 的取值范围是( )
A、a>4 B、a<4 C、a≤4 D、a≥4
15、若 a、b、c 是三角形的三边,则代数式 (a-b)2-c2 的值是( )
A、正数 B、负数 C、等于零 D、不能确定
16、若干学生分宿舍,每间 4 人余 20 人,每间 8 人有一间不空也不满,则宿舍有__间。( )
A、5 B、6 C、7 D、8
17、如图,天平右盘中的每个砝码的质量都是 1g,则物体A的质量 mg 的取值范围,在数轴上表示为( )

A B C D

18、 19、-2≤ <1
20、当正数 x 取不大于 的值时,试求 8-6x 的取值范围。

21、一个维修队原定在 10 天内至少要检修线路 60km,在前两天共完成了 12km 后,又要求提前 2 天完成检修任务,问以后几天内,平均每天至少要检修多少 km?

22某校三年级五班班主任带领该班学生去东山旅游,甲旅行社说:“如果班主任买全票,则其余学生可享受半价优惠”;乙旅行社说:“包括班主任在内全部按全票价的 6 折优惠”,若全票为每张 240 元。
① 问学生多少人时,甲、乙两家旅行社收费一样多?
② 就学生数讨论哪一旅行社更合算。

23、()华美镇的脐橙全市闻名,今年又喜获丰收,某大型超市从山城脐橙农场购进一批脐橙,运输过程中质量损失10%*(超市不负责其他费用)。
①若超市把售价在进价的基础上提高10%,超市是否亏本?通过计算说明。
②若超市要获得至少35%的利润,那么脐橙的售价最低应提高百分之几?
回答者: dearyunstar - 门吏 二级 4-1 12:42
去这里吧,什么都有!

我也给你摘录了一些
列一元一次方程解应用题练习卷
1)5位教师和一群学生一起去公园,教师按全票的票价是每人7元,学生只收半价.如果买门票共花费206.50元,那么学生有多少人?

2)学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?

.
3)变题: 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?

4)某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?

5)某人买了2000元的融资券,一种是一年期年利率为9%,另一种为两年期年利率为12%,分别在一年和两年到期时取出,共得利息450元,问两种融资券各买多少?

6)某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)

7)某班有50名学生,在一次数学考试中,女生的及格率为80%,男生的及格率为75%,全班的及格率为78%,问这个班的男女生各有多少人?

8)某商品按定价销售,每个可获利45元,现在按定价的8.5折出售8个所能获得的利润与按定价每个减价35元出售12个所获得利润一样。问这种商品每个的进价、定价各是多少元?

9)已知甲种商品的原价是乙种商品原价的1.5倍,因市场变化,乙种商品提价的百分数是甲种商品降价百分数的2倍,调价后甲、乙两种商品单价之和比原单价之和提高了2%,求甲种商品的降价百分数和乙种商品的提价百分数。

10)某商品由A,B两种原料制成,其中A原料每千克50元,B原料每千克40元;调价后,A原料价格上涨10%,B原料价格下降15%,但核算后,产品成本不变。问生产11千克这种产品需A,B原料各多少千克?

11)买布问题:顾客用540卢布买了两种布料138俄尺,其中蓝布料每俄尺3卢布,黑布料每俄尺5卢布,两种布料各买了多少?

12)同类变式1:“希望工程”委员会将2000元奖金发给全校25名三好学生,其中市级三好学生每人得奖金200元,校级三好学生每人得奖金50元,问全校市级三好学生、校级三好学生各有多少人?

13)同类变式2:甲、乙两人合资办一个企业,并协议按照投资额的比例多少分配所得利润,已知甲与乙投资额的比例为3:4,首年利润为38500元,问甲、乙两人可获得利润分别为多少元?

14)一份试卷共有25道题,每道题都给出了4个答案,其中只有一个正确答案,每道题选对得4分,不选或错选倒扣1分,如果一个学生得90分,那么他做对了多少道题。

15)有人问毕达哥拉斯,他的学校中有多少学生,他回答说:“一半学生学数学,四分之一学音乐,七分之一正休息,还剩3个女学生。”问毕达哥拉斯的学校中多少个学生。

16)七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加书画社的有多少人?

17)有一些分别标有5,10,15,20,25……的卡片,后一张卡片上的数比前一张卡片上的数大5,小明拿到了相邻的3张卡片,且这些卡片上的数之和为240。
(1)小明拿到了哪3张卡片?
(2)你能拿到相邻的3张卡片,使得这些卡片上的数之和是63吗?

18)三个连续整数的和为72,则这三个数分别是多少?

19)某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组,且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数。

20)足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?

21)甲、乙、丙三个股东合资办一个公司,甲的资本为乙、丙两人资本的和的一半,乙的资本为三人资本总数的,丙的资本是53万元,求这个公司资本总数是多少?

22)某班数学兴趣小组,女生的人数比男生的人数的少2人,如果女生增加3人,男生减少1人,那么女生的人数比全组人数的多3人。求原来男、女生人数。

23)商店里有种型号的电视机,每台售价1200元,可盈利20%,现有一客商以11500元的总价购买了若干台这咱型号的电视机,这样商店仍有15%的利润,问客商买了几台电视机?

1. 能正确分析追及问题中已知数与未知数之间的相等关系,继续利用路程、时间和速度三量之间关系式,列一元一次方程解简单应用题。

2. 会根据题意区别行程问题中的追及和相遇问题。

寻找二者的追及路程即相差路程。

1. 准备题

观察线段图:

请说出图意:小红和小军家相距20千米,他们都从家去学校。

问题:如果他们同时出发,小红能追上小军吗?如果能需要具备什么条件?(可能小红速度>小军速度)

2. 导言

这个问题是我们今天要研究的追及问题,追及问题具备哪几个量?(快速、慢速、追时间、追及路程)

3. 例1. 一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个通知传给队长,通讯员从学校出发,骑自行车以14千米/时速度按原路追击,多少时间可以追上学生队伍?

图示:

相等关系:(1)通讯员行路程=学生先行路程+后行路程

解:设x小时通讯员追上队伍

由题意得:

解得:

(2)速度差×追及时间=相差路程

列方程得:

解得:

答:小时通讯员追上队伍。

例2. 一列慢车从某站开出,每小时行48km,过了一段时间,一列快车从同站出发与慢车同向而行,每小时行72km,又经过1.5小时追上慢车,快车开出前,慢车已行了多长时间?

分析:

相等关系:快车行路-慢车1.5小时行路程=相差路程

解:设快车开出前慢车行了x小时路

由题意得:

答:快车开出前慢车行了小时路。

4. 小结

求追及问题最关键的是找出追及者和被追及者的相差路程,然后可利用相等关系式、设未知数、列方程。

5. 练习

(1)一队学生去校外进行军事野营训练,他们以5千米/时速度行进,走了18分的时候学校派一名通讯员骑自行车从学校按原路追击,只用10分钟把通知传到队长那里,通讯员必须以怎样的速度行进?

解:设通讯员以x千米/时速度行进

(2)甲、乙两人在400米环形跑道上练习长跑,甲每分钟160米,乙每分钟140米,若甲在乙前面100米,两人同时出发,甲经过多少分钟第一次和乙相遇?

解:设甲经x分钟追上乙

(3)※学生队伍从学校出发到营地,以5千米/时速度行进了1小时,这时一个学生以7千米/时速度返回学校办完事后(办事停留时间不计)立即追赶队伍,在距营地2千米地方追上,求学校到营地路程。

提示:

相等关系:学生队伍1小时行路+小时行路+x小时行路=学生从学校到追上路

〔学生(快速)-队伍(慢速)〕×追及时间=相差路程

间接设:设学生从学校x小时追上队伍,则学校到营地千米

=============================
一元一次方程的应用测试题(B卷)一、填空题(每小题3分,共18分) 1.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米. (1)当两人同时同地背向而行时,经过__________秒钟两人首次相遇; (2)两人同时同地同向而行时,经过__________秒钟两人首次相遇. 2.为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树__________棵. 3.用一根绳子围成一个正方形,又用这根绳子围成一个圆,已知圆的半径比正方形的边长少2(π-2)米,请问这根绳子的长度是__________米. 4.某种鲜花进货价为每枝5元,若按标价的八折出售仍可获利3元,问标价为每枝多少元,若设标价为每枝x元,则可列方程为__________,解之得x=__________. 5.如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,则这个两位数是__________. 6.一种药品现在售价56.10元,比原来降低了15%,问原售价为__________元.二、选择题(每小题3分,共24分) 7.李斌在日历的某列上圈出相邻的三个数,算出它们的和,其中肯定不对的是 A.20 B.33 C.45 D.54 8.一家三口准备参加旅行团外

================

一元一次方程应用题精选
日历中的方程
1、三个连续奇数的和是387,求这三个奇数。
2、在日历上任意画一个含有9个数字的方框(3╳3),然后把方框中的9个数字加起来,结果等于90,试求出这9个数字正中间的那个数。
3、一个三位数,三个数位上的数的和是17,百位上的数比十位上的数大7,个位上的数是十位上数的3倍,求这三个数。
4、已知三个连续奇数的和比它们相同的两个偶数的和多15,求三个连续奇数。
5、三个连续偶数的和是18,求它们的积。
6、有两个数,第一个数比第二个数的 还小4,第二个数恰好等于第一个数的4倍,求这两个数。
7、现在弟弟的年龄恰是哥哥年龄的 ,而九年前弟弟的年龄是哥哥年龄的 ,问哥哥现在的年龄是多少?
8、将55分成四个数,如果第一个数加1,第二个数减去1,第三个数乘以2,第四个数除以3,所得的数都相同,求这四个数分别是多少?
9、1998年某人的岁数正好等于他出生年份的数字之和,问这个人2003年是多少岁?
10、小华参加日语培训,为期8天,这8天的和为100,问小华几号结束培训?
11、小明今年的生日的前一天,当天和后一天的日期之和是78,小明今年几号过生日?
12、王老师要参加三天培训,这三天恰好在日历的一竖排上且三个数字相连,并且这三个日子的数字之和是36,你知道王老师都要在几号参加培训吗?
13、小明和小红作游戏,小明拿出一张日历说;“我用笔圈出了2╳2的一个正方形,它们数字的和是76,你知道我圈出的是哪几个数字吗?”你能帮小红解决吗?
14、三个连续偶数的和是36,求它们的积。
15、一个两位数,个位数字是十位数字的4倍,如果把个位数字与十位数字对调,那么得到的新数比原数大54,求原来的两位数。
16、三个连续奇数的和是75,求这三个数。
17、一个两位数,十位数字是a,个位数字是b,把这个两位数的十位数字与个位数字对调,所得的数减去原数,差为72,求这个两位数。
18、用一个正方形在某个月的日历上圈出2╳2个数的和为64,这4天分别是几号?
19、如果用一个正方形在某个月的日历上圈出3╳3个数的和为126,则这9天分别是几号?
20、若今天是星期一,请问2004天之后是星期几?
21、有甲、乙两位同学,甲对乙说:“如果把你的笔给我一枝,那么我的笔是你的笔的2倍。”乙对甲说:“如果把你的笔给我一枝,那么我的笔和你的一样多。”问你们各有多少枝笔?
22、有一个两位数,十位数字比个位数字的2倍多1,将两个数字对调后,所得的数比原数小36,求原数。
23、一个数的七分之一与5的差等于最小的正整数,这个数是多少?
24、一个两位数,十位上的数字比个位上的数字小1,十位与个位上的数字之和是这个两位数的五分之一,求这个两位数。
25、某中学初一学生小刚今年13岁,属羊,非常巧合的是,小刚的爷爷也是属羊的,而且两个人的年龄的和是86,你能算出小刚爷爷的年龄吗?
26、三个连续偶数的和比其中最大的一个数大10,这三个连续偶数是什么?它们的和是多少?

我变胖了
1、用直径为4厘米的圆钢,铸造三个直径为2厘米,高为16厘米的圆柱形零件,问需要截取多长的圆钢?
2、有一块棱长为4厘米的正方体铜块,要将它熔化后铸成长2厘米、宽4厘米的长方体铜块,铸成后的铜块的高是多少厘米(不计损耗)?
3、某工厂锻造直径为60毫米,高20毫米的圆柱形瓶内装水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。
4、将一罐满水的直径为40厘米,高为60厘米的圆柱形水桶里的水全部灌于另一半径为30厘米的圆柱形水桶里,问这时水的高度是多少?
5、一个长、宽、高分别是9厘米、7厘米、3厘米的长方体铁块和一个棱长为5厘米的正方体铁块,熔化成一个圆柱体,其底面直径为20厘米,请求圆柱体的高(π取3.14)
6、用5.2米长的铁丝围成一个长方形,使得长比宽多0.6米,求围成的长方形的长和宽为多少米?
7、一个直径为1.2米高为1.5米的圆柱形水桶,已装满水,向一个底面边长为1米的正方形铁盒倒水,当铁盒装满水时,水桶中的水高度下降了多少米。
8、长方形的长和宽的比是5:3,长比宽长12厘米,求这个长方形的长和宽分别是多少。
9、小圆柱的直径是8厘米,高6厘米,大圆柱的直径是10厘米,并且它的体积是小圆柱体体积的2.5倍,则大圆柱的高是多少厘米?
10、要锻造一个半径为5厘米,高为8厘米的圆柱形毛胚,应截取半径为4厘米的圆钢多长?
11、已知黄豆发芽后的重量可以增加3.5倍,现需要100千克黄豆芽,要用黄豆多少千克?
12、一个长方形的周长为36厘米,若长减少4厘米,宽增加2厘米,长方形就变成正方形,求正方形的边长。
13、用一个底面半径为5厘米的圆柱形储油器,油液中浸有钢珠,若从中捞出546π克钢珠,问液面下降了多少厘米?(1立方厘米钢珠7.8克)
14、要锻造一个直径为70毫米,高为45毫米的圆柱形零件毛胚,要截取直径为50毫米的圆钢多少毫米?
15、某机器加工厂要锻造一个毛胚,上面是一个直径为20毫米,高为40毫米的圆柱,下面也是一个圆柱,直径为60毫米,高为20毫米,问需要直径为40毫米的圆钢多长?
16、用一根20厘米的铁丝围成一个长方形(1)使得长方形的长比宽大2.6厘米,此时,长方形的长、宽各是多少厘米?(2)使得长方形的长与宽相等,此时正方形的边长是多少厘米?
17、有一个圆柱形铁块,底面直径为20厘米,高为26厘米,把它锻造成长方体毛胚,若使长方体的长为10π厘米,宽为13厘米,求长方体的高。

打折销售
商品利润=商品售价—商品成本价
商品的利润率=
=
商品打 折出售规定按标价的 出售。
1、商品进价为400元,标价为600元,商店要求以利润率不低于5%的售价打折出售,最低可以打几折出售此商品?
2、某种商品进价为1600元,按标价的8折出售利润率为10%,问它的标价是多少?
3、甲种运动器械进价1200元,按标价1800元的9折出售,乙种跑步器,进价2000元,按标价3200元的8折出售,哪种商品的利润率更高些?
4、一批货物,甲把原价降低10元卖,用售价的10%作资金,乙把原价降低20元,用售价的20%作资金,若两人资金一样多,求原价。
5、某商品的售价780元,为了薄利多销,按售价的9折销售再返还30元礼券,此时仍获利10%,此商品的进价是多少元?
6、一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,那么彩电的标价是多少元?
7、某商品的标价为165元,若降价以9折出售(即优惠10%),仍可获利10%(相对于进价),那么该商品的进价是多少?
8、某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?
9、某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?
10、某商场售货员同时卖出两件上衣,每件都以135元售出,若按成本计算,其中一件赢利25%,另一件亏损25%,问这次售货员是赔了还是赚了?
11、市场鸡蛋按个数计价,一商贩以每个0.24元购进一批鸡蛋,但在贩运途中,不慎碰坏了12个,剩下的蛋以每个0.28元售出,结果获利11.2元,问商贩当初买进多少鸡蛋?
12、某学校准备组织教师和学生去旅游,其中教师22名,现有甲、乙两家旅行社,其定价相同,并且都有优惠条件,甲旅行社表示教师免费,学生按八折收费;乙旅行社表示教师和学生一律按七五折收费,经核算后,甲、乙实际收费相同,问共有多少学生参加旅游?
13、某股民将甲、乙两种股票卖出,甲种股票卖出1500元,获利20%,乙种股票也卖出1500元,但亏损20%,该股民在这次交易中是赢利还是亏损?赢利或亏损多少?
14、某商店从某公司批发部购100件A钟商品,80件B种商品,共花去2800元,在商店零售时,每件A种商品加价15%,每件B种商品加价10%,这样全部售出后共收入3140元,问A、B两种商品的买入价各为多少元?
15、某种商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚20元,这种商品的定价为多少元?
16、一套家具按成本加6成定价出售,后来在优惠条件下,按照售价的72%降低价格售出可得6336元,求这套家具的成本是多少元?这套家具售出后可赚多少元?
17、某种商品标价为226元,现打七折出售,仍可获利13%,这钟商品的进价是多少?
18、个体户小张,把某种商品按标价的九折出售,仍可获利20%,若按货物的进价为每件24元,求每件的标价是多少元?
19、某商品的进价是3000元,标价是4500元
(1) 商店要求利润不低于5%的售价打折出售,最低可以打几折出售此商品?
(2) 若市场销售情况不好,商店要求不赔本的销售打折出售,最低可以打几折售出此商品?
(3) 如果此商品造成大量库存,商店要求在赔本不超过5%的售价打折出售,最低可以打几折售出此商品?

回答(2):

(1)设原计划租40座客车x辆,七年级有y人,则y= 40x+20 (用含x的式子表示)
(2)若用50座客车,则y= 50*(x-1)=50x-50 (用含x的式子表示)
(3)七年级学生有多少人?
40x+20=50x-50
x=7
y=40*7+20=300(人)

回答(3):

你表,智商的问题啊!你不会啊?这应该是初中的知识啊!