解:设√(x²-1)=t,则x²=t²+1,xdx=tdt 故 原式=∫xdx/[x²√(x²-1)] =∫tdt/[t(t²+1)] =∫dt/(t²+1) =arctant+C (C是积分常数) =arctan[√(x²-1)]+C。