在三角形ABC中,a、b、c为三边长,且a的四次方+b的四次方+c的四次方=(ab)的2次方+(bc)的2次方+(ac)

2次方,试判断此三角形的形状.谢谢!!
2025-01-05 16:17:45
推荐回答(3个)
回答(1):

a^4+b^4+c^2=(ab)^2+(bc)^2+(ac)^2
2a^4+2b^4+2c^2-2(ab)^2-2(bc)^2-2(ac)^2=0
a^4-2(ab)^2+b^4+a^4-2(ac)^2+c^2+b^4-2(bc)^2+c^2=0
(a^2-b^2)^2+(a^2-c^2)^2+(b^2-c^2)^2=0
则a^2-b^2=0 a^2-c^2=0 b^2-c^2=0
所以a=b=c
所以是等边三角形

回答(2):

a^4+b^4+c^4=(ab)^2+(bc)^2+(ac)^2
a^4+b^4+c^4-(ab)^2-(bc)^2-(ac)^2 = 0
2a^4+2b^4+2c^4-2(ab)^2-2(bc)^2-2(ac)^2 = 0
a^4-2a^2b^2+b^4 + b^4-2b^2c^2+c^4 + c^4-2a^2c^2+a^4 = 0
(a^2-b^2)^2 + (b^2-c^2)^2 + (c^2-a^2)^2 = 0
(a^2-b^2)^2 =0, (b^2-c^2)^2 =0, (c^2-a^2)^2 = 0
a=b=c,等边三角形

回答(3):

是等边三角形。想知道证明过程。再联系吧