定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:①f

2024-11-28 10:39:42
推荐回答(1个)
回答(1):

∵定义在R上的偶函数f(x)满足f(x+1)=-f(x),
∴f(x)=-f(x+1)=-[-f(x+1+1)]=f(x+2),
∴f(x)是周期为2的函数,则①正确.
又∵f(x+2)=f(x)=f(-x),
∴y=f(x)的图象关于x=1对称,②正确,
又∵f(x)为偶函数且在[-1,0]上是增函数,
∴f(x)在[0,1]上是减函数,
又∵对称轴为x=1.
∴f(x)在[1,2]上为增函数,f(2)=f(0),
故③④错误,⑤正确.
故答案应为①②⑤.