求函数 y=(x-4)(x+1)^(2/3)的单调区间
解:
故当 x<-1或x≧1时y'≧0,即在区间 (-∞,-1)∪[1,+∞)内函数y单调增;
当-1
y=(x-4)(x+1)^(2/3)
y' = (x+1)^(2/3) + (2/3)(x-4)(x+1)^(-1/3)
y'=0
x+1 + (2/3)(x-4) =0
3(x+1)+2(x-4)=0
5x=5
x=1
y'|x=1+ >0
y'|x=1- <0
x=1 (min)
min f(x) = f(1) =(1-4)(1+1)^(2/3) = -3. 2^(2/3)
单调区间
增加=[1,+∞)
减小=(-∞->1]