如图,已知点F的坐标为(3,0),点A、B分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点,设点

2024-11-22 04:39:31
推荐回答(1个)
回答(1):

解答:解:
过P作PM⊥x轴于点M.
设P的坐标是(x,y).直角△PMF中,PM=y,MF=3-x.PM2+MF2=PF2
∴(3-x)2+y2=(5-

3
5
x)2
解得:y2=-
16
25
x2+16.
在上式中,令x=0,解得y=4,即OB=4.故A错误;
在上式中,令y=0,解得:x=5,则AF=OA-OF=5-3=2,故B,C正确;
在直角△OBF中,根据勾股定理即可求得:BF=5,故D正确.
故选A.