求极限时什么时候适合用等价无穷小

2024-11-16 06:57:35
推荐回答(3个)
回答(1):

求极限时,使用等价无穷小的条件   :

1、被代换的量,在取极限的时候极限值为0;

2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。

扩展资料: 

利用极限四则运算法则求极限

函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则

lim[f(x)±g(x)]=limf(x)±limg(x)=A±B

lim[f(x)・g(x)]=limf(x)・limg(x)=A・B

lim==(B≠0)

(类似的有数列极限四则运算法则)现以讨论函数为例。对于和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,但使用这些法则,往往要根据具体的函数特点,先对函数做某些恒等变形或化简,再使用极限的四则运算法则。

参考资料来源:百度百科-等价无穷小

回答(2):

加减项中如果每一项都是无穷小,各自用等价无穷小替换以后得到的结果不是0,则是可以替换的。用泰勒公式求极限就是基于这种思想。 

当x→0,且x≠0,则 

x~sinx~tanx~arcsinx~arctanx; 

x~ln(1+x)~(e^x-1); 

(1-cosx)~x*x/2; 

[(1+x)^n-1]~nx; 

loga(1+x)~x/lna;

a的x次方~xlna;

(1+x)的1/n次方~1/nx(n为正整数);

注:^ 是乘方,~是等价于,这是我做题的时候总结出来的。

扩展资料:

求极限时使用等价无穷小的条件:

1、被代换的量,在去极限的时候极限值为0。

2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

无穷小就是以数零为极限的变量。然而常量是变量的特殊一类,就像直线属于曲线的一种。确切地说,当自变量x无限接近某个值x0(x0可以是0、∞、或是别的什么数)时,函数值f(x)与零无限接近,即f(x)=0,则称f(x)为当x→x0时的无穷小量。

参考资料来源:百度百科——等价无穷小

回答(3):

加减项中如果每一项都是无穷小,各自用等价无穷小替换以后得到的结果不是0,则是可以替换的。用泰勒公式求极限就是基于这种思想。
举一个例子让你明白:
求当x→0时,(tanx-sinx)/(x^3)的极限。
用洛必塔法则容易求得这个极限为1/2。
我们知道,当x→0时,tanx~x,sinx~x,若用它们代换,结果等于0,显然错了,这是因为x-x=0的缘故;
而当x→0时,tanx~x+(x^3)/3,sinx~x-(x^3)/6,它们也都是等价无穷小(实际上都是3阶麦克劳林公式),若用它们代换:tanx-sinx~(x^3)/2≠0,就立即可以得到正确的结果。