解析:1到100共100个数,首尾各自相加,如1+100,2+99,一直到50+51,分割为50项,每一项的值都为101,那么1+2+3+4+5+6+7+8+9+10+11+......+100=101*50=5050。
1+2+3+4+5+6+7+8+9+10+…+100
=(1+100)+(2+99)+(3+98)+...+(50+51)
=101*50
=5050
扩展资料
简便计算的方法:
1、“凑整巧算”——运用加法的交换律、结合律进行计算。
2、运用乘法的交换律、结合律进行简算。
3、运用减法的性质进行简算,同时注意逆进行。
4、运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。
5、运用乘法分配律进行简算。
6、混合运算(根据混合运算的法则)。
首位相加:
1+100,2+99+……50+51
最后是101*50=5050。
当然如果学过了高斯求和,直接代公式就可以了:
高斯求和公式是:1+2+3+4+…+n=n(n+1)/2;
答案是一样的。
扩展资料:
文字表述:和=(首项 + 末项)x项数 /2数学表达:1+2+3+4+……+ n = (n+1)n /2
约翰·卡尔·弗里德里希·高斯(Johann Carl Friedrich Gauss ,1777年4月30日-1855年2月23日)德国著名数学家、物理学家、天文学家、大地测量学家。是近代数学奠基者之一,高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。
高斯和阿基米德、牛顿并列为世界三大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。
参考资料来源:百度百科-高斯求和
1+2+3+4+5+6+7+8+9+10+…+100
=(1+100)×50
=5050
1+2+3+4+5+6+7+8+9+10+...+100
=100+(1+99)+(2+98)+(3+97)+...(49+51)+50
=100X50+50
=5050
可以用高斯算法直接用公式,也可以首尾相加。