设z1=a+biz2=c+di|z1|=√(a^2+b^2)=1-->a^2+b^2=11|z2|=√(c^2+d^2)=1c^2+d^2=12z1+z2=(a+c)+(b+d)i=i得a+c=0b+d=11式-2式得a^2-c^2+b^2-d^2=0(a+c)(a-c)+(b+d)(b-d)=0b-d=0b=db=d=1/21式+2式得a^2+c^2+1/4+1/4=2a^2+c^2=3/22a^2=3/2a^2=3/4a=√3/2或a=-√3/2c=-√3/2或 c=√3/2∴z1=√3/2+i/2z2=-√3/2+i/2或z1=-√3/2+i/2z2=√3/2+i/2