两边平方
左边=a^2+b^2+c^2+d^2+2√(a^2+b^2)*√(c^2+d^2)
=a^2+b^2+c^2+d^2+2√(a^2*c^2+b^2*c^2+a^2*d^2+b^2*d^2)
右边=(a+c)^2+(b+d)^2
=a^2+2ac+c^2+b^2+2bd+d^2
这时左边与右边相同的部分为a^2+b^2+c^2+d^2,去掉相同部分,两边继续平方
得到
右边剩余部分的平方=[2(ac+bd)]^2=4a^2*c^2+4b^2*d^2+8ac*bd
左边剩余部分的平方=4(a^2*c^2+b^2*c^2+a^2*d^2+b^2*d^2)
那么去掉再次相同部分,得到左边=4a^2*d^2+4b^2*c^2
右边=8ac*bd
根据基本不等式(a^2+b^2=2ab):
4a^2*d^2+4b^2*c^2≥2√4a^2*d^2*4b^2*c^2=8abcd
所以也就得到:左边≥右边
所以就可以得到要求证的内容。