(1)令x=0,y=0则f(0+0)=f(0)+f(0) f(0)=2f(0),f(0)=0(2)令x=-y 有f(x+y)=f(x)+f(y)即f(0)=f(x)+f(-x) 又f(0)=0,所以f(x)+f(-x)=0即f(x)为奇函数
1:f(0+0)=f(0)+f(0) 所以f(0)=02:f(x-x)=f(x)+f(-x) 所以f(0)=f(x)+f(-x) f(x)=-f(-x)