高数有理式分解

高数有理式分解x^3+1/x^3-5x^2+6x分解成多项式和简单分式之和
2025-03-21 20:26:18
推荐回答(1个)
回答(1):

解:∵(x³+1)/(x³-5x²+6x)=1+(5x²-6x+1)/[x(x-2)(x-3)],∴设(x³+1)/(x³-5x²+6x)=1+a/x+b/(x-2)+c/(x-3)。
两边乘以x后,令x=0,解得a=1/6;两边乘以(x-2)后,令x=2,解得b=-9/2;两边乘以(x-3)后,令x=3,解得b=28/3。
∴(x³+1)/(x³-5x²+6x)=1+(1/6)/x-(9/2)/(x-2)+(28/3)/(x-3)。
供参考。