python数据分析的包 哪些

2024-11-01 00:55:03
推荐回答(4个)
回答(1):

 IPython
  

  IPython 是一个在多种编程语言之间进行交互计算的命令行 shell,最开始是用 python 开发的,提供增强的内省,富媒体,扩展的 shell
语法,tab 补全,丰富的历史等功能。IPython 提供了如下特性:

  更强的交互 shell(基于 Qt 的终端)

  一个基于浏览器的记事本,支持代码,纯文本,数学公式,内置图表和其他富媒体

  支持交互数据可视化和图形界面工具

  灵活,可嵌入解释器加载到任意一个自有工程里

  简单易用,用于并行计算的高性能工具

  由数据分析总监,Galvanize 专家 Nir Kaldero 提供。

  

  GraphLab Greate 是一个 Python 库,由 C++ 引擎支持,可以快速构建大型高性能数据产品。

  这有一些关于 GraphLab Greate 的特点:

  可以在您的计算机上以交互的速度分析以 T 为计量单位的数据量。

  在单一平台上可以分析表格数据、曲线、文字、图像。

  最新的机器学习算法包括深度学习,进化树和 factorization machines 理论。

  可以用 Hadoop Yarn 或者 EC2 聚类在你的笔记本或者分布系统上运行同样的代码。

  借助于灵活的 API 函数专注于任务或者机器学习。

  在云上用预测服务便捷地配置数据产品。

  为探索和产品监测创建可视化的数据。

  由 Galvanize 数据科学家 Benjamin Skrainka 提供。

  Pandas

  pandas 是一个开源的软件,它具有 BSD 的开源许可,为 Python
编程语言提供高性能,易用数据结构和数据分析工具。在数据改动和数据预处理方面,Python 早已名声显赫,但是在数据分析与建模方面,Python
是个短板。Pands 软件就填补了这个空白,能让你用 Python 方便地进行你所有数据的处理,而不用转而选择更主流的专业语言,例如 R 语言。

  整合了劲爆的 IPyton 工具包和其他的库,它在 Python 中进行数据分析的开发环境在处理性能,速度,和兼容方面都性能卓越。Pands
不会执行重要的建模函数超出线性回归和面板回归;对于这些,参考 statsmodel 统计建模工具和 scikit-learn 库。为了把 Python
打造成顶级的统计建模分析环境,我们需要进一步努力,但是我们已经奋斗在这条路上了。

  由 Galvanize 专家,数据科学家 Nir Kaldero 提供。

  PuLP

  线性编程是一种优化,其中一个对象函数被最大程度地限制了。PuLP 是一个用 Python
编写的线性编程模型。它能产生线性文件,能调用高度优化的求解器,GLPK,COIN CLP/CBC,CPLEX,和GUROBI,来求解这些线性问题。

  由 Galvanize 数据科学家 Isaac Laughlin 提供

  Matplotlib

  

  matplotlib 是基于 Python 的
2D(数据)绘图库,它产生(输出)出版级质量的图表,用于各种打印纸质的原件格式和跨平台的交互式环境。matplotlib 既可以用在 python 脚本,
python 和 ipython 的 shell 界面 (ala MATLAB? 或 Mathematica?),web 应用服务器,和6类 GUI
工具箱。

  matplotlib 尝试使容易事情变得更容易,使困难事情变为可能。你只需要少量几行代码,就可以生成图表,直方图,能量光谱(power
spectra),柱状图,errorcharts,散点图(scatterplots)等,。

  为简化数据绘图,pyplot 提供一个类 MATLAB 的接口界面,尤其是它与 IPython
共同使用时。对于高级用户,你可以完全定制包括线型,字体属性,坐标属性等,借助面向对象接口界面,或项 MATLAB 用户提供类似(MATLAB)的界面。

  Galvanize 公司的首席科学官 Mike Tamir 供稿。

  Scikit-Learn

  

  Scikit-Learn 是一个简单有效地数据挖掘和数据分析工具(库)。关于最值得一提的是,它人人可用,重复用于多种语境。它基于
NumPy,SciPy 和 mathplotlib 等构建。Scikit 采用开源的 BSD 授权协议,同时也可用于商业。Scikit-Learn
具备如下特性:

  分类(Classification) – 识别鉴定一个对象属于哪一类别

  回归(Regression) – 预测对象关联的连续值属性

  聚类(Clustering) – 类似对象自动分组集合

  降维(Dimensionality Reduction) – 减少需要考虑的随机变量数量

  模型选择(Model Selection) –比较、验证和选择参数和模型

  预处理(Preprocessing) – 特征提取和规范化

  Galvanize 公司数据科学讲师,Isaac Laughlin提供

  Spark

  

  Spark 由一个驱动程序构成,它运行用户的 main 函数并在聚类上执行多个并行操作。Spark
最吸引人的地方在于它提供的弹性分布数据集(RDD),那是一个按照聚类的节点进行分区的元素的集合,它可以在并行计算中使用。RDDs 可以从一个 Hadoop
文件系统中的文件(或者其他的 Hadoop 支持的文件系统的文件)来创建,或者是驱动程序中其他的已经存在的标量数据集合,把它进行变换。用户也许想要 Spark
在内存中永久保存 RDD,来通过并行操作有效地对 RDD 进行复用。最终,RDDs 无法从节点中自动复原。

  Spark 中第二个吸引人的地方在并行操作中变量的共享。默认情况下,当 Spark
在并行情况下运行一个函数作为一组不同节点上的任务时,它把每一个函数中用到的变量拷贝一份送到每一任务。有时,一个变量需要被许多任务和驱动程序共享。Spark
支持两种方式的共享变量:广播变量,它可以用来在所有的节点上缓存数据。另一种方式是累加器,这是一种只能用作执行加法的变量,例如在计数器中和加法运算中。

回答(2):

最基础的就是numpy和pandas,这是数据分析入门必学的两个包,此外想深入学习的话就要继续学习机器学习和深度学习相关的算法,以此为基础才能有深入的掌握,希望可以帮到你

回答(3):

NumPy pandas matplotlib 机器学习的scikit-learn

回答(4):

Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy。其中Numpy是一个用python实现的科学计算包。包括:
一个强大的N维数组对象Array;
比较成熟的(广播)函数库;
用于整合C/C++和Fortran代码的工具包;
实用的线性代数、傅里叶变换和随机数生成函数。
SciPy是一个开源的Python算法库和数学工具包,SciPy包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算。其功能与软件MATLAB、Scilab和GNU Octave类似。
Numpy和Scipy常常结合着使用,Python大多数机器学习库都依赖于这两个模块,绘图和可视化依赖于matplotlib模块