这题怎么做?高数微积分

2025-05-03 14:03:07
推荐回答(2个)
回答(1):

y'+ytanx=secx
先考虑齐次方程y'+ytanx=0的通解
dy/dx=-ytanx
dy/y=-tanxdx
∫dy/y=∫-tanxdx
ln|y|=ln|cosx|+C
y=C*cosx
再用常数变易法求y'+ytanx=secx的通解
用u(x)代换常数C,y=u(x)*cosx
u'(x)*cosx-u(x)*sinx+u(x)*sinx=secx
u'(x)=sec^2x
u(x)=tanx+C
所以原微分方程的通解为:y=(tanx+C)cosx=sinx+C*cosx,其中C是任意常数

回答(2):

化简,每项除以cosx,然后用一阶线性方程求解公式