dy/dx=y/xln(y/x)
令y/x=u,y=ux
dy/dx=xdu/dx+u
xdu/dx+u=ulnu
1/u(lnu-1)du=1/xdx
∫1/u(lnu-1)du=∫1/xdx
∫1/(lnu-1)d(lnu-1)=ln|x|+ln|c|
ln|lnu-1|=ln|x|+ln|c|
lnu-1=cx
lny/x-1=cx
y/x=e^(cx+1)
y=xe^(cx+1)
e^3=e^(c+1)
c=2
所以
特解为:y=xe^(2x+1)
let
u=y/x
du/dx = y'/x - y/x^2
xy' = x^2.du/dx + y
=x^2.du/dx + ux
xy'+y(lnx-lny)=0
xy'-yln(y/x)=0
[x^2.du/dx + ux] - ux.lnu =0
x.du/dx + u - ulnu =0
∫du/[u(lnu -1)] = ∫dx/x
∫d(lnu-1) /(lnu-1) = ∫dx/x
ln|lnu -1| = ln|x| + C'
y(1)=e^3
=> C' =ln(e^3-1)
ln|lnu -1| = ln|x| +ln(e^3-1)
lnu -1 =(e^3-1)x
lnu =1+(e^3-1)x
u = e^[ 1+(e^3-1)x ]
y/x =e^[ 1+(e^3-1)x ]
y=x.e^[ 1+(e^3-1)x ]
如上图所示。
《无底洞》(又名“陷空山”)