若x^2-3x+1=0,求分式x^2⼀x^4+x^2+1的值

2024-11-07 02:44:21
推荐回答(2个)
回答(1):

x^2-3x+1=0
x+(1/x)=3
x^2/(x^4+x^2+1)
=1/[x^2+(1/x^2)+1]
=1/[(x+1/x)^2-1]
原式=1/[(x+1/x)^2-1]
=1/(3^2-1)
=1/8

回答(2):

x^4+x^2+1
=(3x-1)^2+x^2+1
=10x^2-6x+2
=10(x^2-3x+1) +24x-8
=8(3x-1)

x^2/(x^4+x^2+1)
=(3x-1)/[8(3x-1)]
=1/8