说明:原题应该是“lim(1+1/2+1/2^2+…+1/2^n)
n趋向无穷”。
解:∵令Sn=1+1/2+1/2^2+…+1/2^n...........(1)
==>Sn/2=1/2+1/2^2+1/2^3+.......+1/2^(n+1)
(等式两端同除2)..........(2)
∴由(1)式减(2)式,得
(1-1/2)Sn=1-1/2^(n+1)
==>Sn=[1-1/2^(n+1)]/[(1-1/2)]=2[1-1/2^(n+1)]
故lim(n->∞)(1+1/2+1/2^2+…+1/2^n)=lim(n->∞)Sn
=lim(n->∞){2[1-1/2^(n+1)]}
=2(1-0)
=2。
用夹逼定理:
n²/(n
^2+
nπ
)≤n〔[1/(n
^2+
π
)]+…+[1/(n
^2+n
π
)]〕≤n²/(n
^2+
π
)
lim(n→∞)n珐贰粹荷诔沽达泰惮骏8;/(n
^2+
nπ
)=1
lim(n→∞)n²/(n
^2+
π
)=1
所以证明lim(n→∞)n〔[1/(n
^2+
π
)]+[1/(n
^2+
π
)]+…+[1/(n
^2+n
π
)]〕=1