哪有资源与评价数学七年级下的答案、、、

2024-11-28 16:32:04
推荐回答(1个)
回答(1):

第一章整式的乘除
1.1 整式
1.(1)C、D、F;(2)A、B、G、H;(3)A、B;(4)G;(5)E、I;2. ;3. ; 4.四,四,- ab2c,- ,25 ;5.1,2;6. a3b2c;7.3x3-2x2-x;8. ;9.D;10.A; 11.B¬;12.D ;13.C;14. ;15.a= ;16.n= ;四.-1.
1.2 整式的瞎明加减
1.-xy+2x2y2; 2.2x2+2x2y; 3.3; 4.a2-a+6; 5.99c-99a; 6.6x2y+3x2y2-14y3; 7. ; 8. ; 9.D; 10.D; 11.D; 12.B; 13.C; 14.C; 15.B; 16.D; 17.C;18.解:原式= ,当a=-2,x=3时, 原式=1.
19. 解:x=5,m=0,y=2,原式=5.20.(8a-5b)-[(3a-b)- ]= ,当a=10,b=8时,上车模神饥乘客是29人.21. 解:由 ,得xy=3(x+y),原式= .
22. 解:(1)1,5,9,即后一个比前一个多4正方形.
(2)17,37,1+4(n-1).
四.解:3幅图中,需要的绳子分别为4a+4b+8c,4a+4b+4c,6a+6b+4c,
所以(2)中的用绳最短,(3)中的用绳最长.
1.3 同底数幂的乘法
1. , ;2.2x5,(x+y)7 ;3.106;4.3;5.7,12,15,3 ;6.10;7.D ;8.B¬; 9.D;10.D; 11.B;12.(1)-(x-y)10 ;(2)-(a-b-c)6;(3)2x5 ;(4)-xm
13.解:9.6×106×1.3×108≈1.2×1015(kg).
14.(1)① ,② .
(2)①x+3=2x+1,x=2 ②x+6=2x,x=6.
15.-8x7y8 ;16.15x=-9,x=- .
四.105.
1.4 幂的乘方与积的乘方
1. , ;2. ;3.4 ;4. ;5. ; 6.1,-1;7.6,108; 8.37;9.A、D;10.A、C;11.B;12.D ;13.A ;14.B ;15.A;16.B.17.(1)0;(2) ;(3)0.
18.(1)241 (2)540019. ,而 , 故 .20.-7;
21.原式= ,
另知 的末位数与33的末位数字相同都是7,而 的末位数字为5,
∴原式的末位数字为15-7=8.
四.400.
1.5 同底数幂的除法
1.-x3,x ;2.2.04×10-4kg;3.≠2;4.26;5.(m-n)6;6.100 ;7. ;8.2;9.3¬,2,2; 10.2m=n;11.B; 12.B ;13.C;14.B;15.C;16.A;
17.(1)9;(2)9;(3)1;(4) ;18.x=0,y=5;19.0;20.(1) ;
(2) .21. ;
四.0、2、-2.
1.6 整式的乘法旦返
1.18x4y3z2;2.30(a+b)10;3.-2x3y+3x2y2-4xy3;4.a3+3a;5.-36;6.a4¬-16;7.-3x3-x+17 ;8.2,3 9. ;10.C;11.C;12.C;13.D;14.D;15.D;16¬.B ;17.A ; 18.(1)x= ;(2)0;
19. ∵ ∴ ;
20.∵x+3y=0 ∴x3+3x2y-2x-6y=x2(x+3y)-2(x+3y)=x2•0-2•0=0,
21.由题意得35a+33b+3c-3=5,
∴35a+33b+3c=8,
∴(-3)5a+(-3)3b+(-3)c-3=-(35a+33b+3c)-3=-8-3=-11,
22.原式=-9,原式的值与a的取值无关.
23.∵ ,
= ,
= .
∴能被13整除.
四. ,有14位正整数.
1.7 平方差公式(1)
1.36-x2,x2- ; 2.-2a2+5b;3.x+1;4.b+c,b+c; 5.a-c,b+d,a-c,b+d ;6. ,159991;7.D; 8.C;9.D;10. -1;11.5050 ;12.(1) ,-39 ; (2)x=4;13.原式= ;14.原式= .15.这两个整数为65和63.
四.略.
1.7 平方差公式(2)
1.b2-9a2;2.-a-1;3.n-m;4.a+b ,1; 5.130+2 ,130-2 ,16896; 6. 3x-y2;7.-24 ;8.-15;9.B; 10.D;11.C;12.A;13.C;14.B.15.解:原式= .
16.解:原式=16y4-81x4;17.解:原式=10x2-10y2. 当x=-2,y=3时,原式=-50.
18.解:6x=-9,∴x= .
19.解:这块菜地的面积为:
(2a+3)(2a-3)=(2a)2-9=4a2-9(cm2),
20.解:游泳池的容积是:(4a2+9b2)(2a+3b)(2a-3b),
=16a4-81b4(米3).
21.解:原式=-6xy+18y2 ,
当x=-3,y=-2时, 原式=36.
一变:解:由题得:
M=(-4x+3y)(-3y-4x)-(2x+3y)(8x-9y)
=(-4x)2-(3y)2-(16x2-18xy+24xy-27y2)
=16x2-9y2-16x2-6xy+27y2=18y2-6xy.
四.2n+1.
1.8 完全平方公式(1)
1. x2+2xy+9y2, y-1 ;2.3a-4b,24ab,25,5 ;3.a2+b2+c2+2ab-2ac-2bc;4.4ab¬,-2, ;5.±6;6.x2-y2+2yz-z2;7.2cm;8.D; 9.B ; 10.C; 11.B ; 12.B ; 13.A;
14.∵x+ =5 ∴(x+ )2=25,即x2+2+ =25
∴x2+ =23 ∴(x2+ )2=232 即 +2+ =529,即 =527.
15.[(a+1) (a+4)] [(a+2) (a+3)]=(a2+5a+4) (a2+5a+6)= (a2+5a)2+10(a2+5a)+24
= .
16.原式= a2b3-ab4+2b. 当a=2,b=-1时,原式=-10.
17.∵a2+b2+c2-ab-bc-ca=0
∴2(a2+b2+c2-ab-bc-ca)=0
∴(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)=0
即(a-b)2+(b-c)2+(a-c)2=0
∴a-b=0,b-c=0,a-c=0
∴a=b=c.
18.左边=[(a+c)2-b2](a2-b2+c2)=(a2+b2+c2)(a2-b2+c2)
=(a2+c2)2-b4= +2a2c2-b4= .
四.ab+bc+ac=- .
1.8 完全平方公式(2)
1.5y;2.500;2;250000+2000+4;252004.3.2;4.3a;6ab;b2;5.-6;6.4;7.2xy;2xy;
8. ,4;9.D ; 10.D ; 11.B ; 12.B; 13.C; 14.B;
15.解:原式 =2a4-18a2.16.解:原式 =8x3-2x4+32.当x=- 时,原式= .
17.解:设m=1234568,则1234567=m-1,1234569=m+1,
则A=(m-1)(m+1)=m2-1,B=m2.
显然m2-118.解:-(x2-2)2>(2x)2-(x2)2+4x,
-(x4-4x2+4)>4x2-x4+4x,
-x4+4x2-4>4x2-x4+4x,
-4>4x,∴x<-1.
19.解:
由①得:x2+6x+9+y2-4y+4=49-14y+y2+x2-16-12,
6x-4y+14y=49-28-9-4,
6x+10y=8,即3x+5y=4,③
由③-②×③得:2y=7,∴y=3.5,
把y=3.5代入②得:x=-3.5-1=-4.5,

20.解:由b+c=8得c=8-b,代入bc=a2-12a+52得,
b(8-b)=a2-12a+52,8b-b2=a2-12a+52,
(a-b)2+(b-4)2=0,
所以a-6=0且b-4=0,即a=6,b=4,
把b=4代入c=8-b得c=8-4=4.
∴c=b=4,因此△ABC是等腰三角形.
四.(1)20012+(2001×2002)2+20022=(2001×2002+1)2.
(2) n2+[n(n+1)]2+(n+1)2=[n(n+1)]2.
1.9 整式的除法
1. ; 2.4b; 3. -2x+1; 4. ; 5.-10× ; 6.-2yz,x(答案¬不惟一); 7. ; 8.3; 9.x2+2; 10.C; 11.B; 12.D; 13.A; 14.C; 15.D;
16.(1)5xy2-2x2y-4x-4y ; (2)1 (3)2x2y2-4x2-6;
17.由 解得 ;
∴ .
18.a=-1,b=5,c=- ,
∴原式= .
19. ;
20.设除数为P,余数为r,则依题意有:
80=Pa+r ①,94=Pb+r ②,136=Pc+r ③,171=Pd+r ④,其中P、a、b、c、d¬为正整数,r≠0
②-①得14=P(b-a),④-③得35=P(d-c)而(35,14)=7
故P=7或P=1,当P=7时,有80÷7=11…3 得r=3
而当P=1时,80÷1=80余0,与余数不为0矛盾,故P≠1
∴除数为7,余数为3.
四.略.
单元综合测试
1. , 2.3,2; 3.1.23× ,-1.49× ;4.6;4; ; 5.-2 6¬.单项式或五次幂等,字母a等; 7.25; 8.4002;9.-1;10.-1; 11.36;12.a=3,b=6¬,c=4 ;13.B ; 14.A ; 15.A ;16.A ; 17.C ; 18.D;
19.由a+b=0,cd=1,│m│=2 得x=a+b+cd- │m│=0
原式= , 当x=0时,原式= .
20.令 ,
∴原式=(b-1)(a+1)-ab=ab-a+b-1-ab=b-a-1= .
21.∵
=

∴ =35.
22.
= =123×3-12×3+1=334.
第二章 平行线与相交线
2.1余角与补角
1.×、×、×、×、×、√;2.(1)对顶角(2)余角(3)补角;3.D;4.110°、70°、110°;5.150°;6.60°;7.∠AOE、∠BOC,∠AOE、∠BOC,1对;8.90°9.30°;10.4对、7对;11.C;12.195°;13.(1)90°;(2)∠MOD=150°,∠AOC=60°;14.(1)∠AOD=121°;(2)∠AOB=31°,∠DOC=31°;(3)∠AOB=∠DOC;(4)成立;
四.405°.
2.2探索直线平行的条件(1)
1.D;2.D;3.A;4.A;5.D;6.64°;7.AD、BC,同位角相等,两直线平行;8、对顶角相等,等量代换,同位角相等,两直线平行;9.BE‖DF(答案不唯一);10.AB‖CD‖EF;11.略;12.FB‖AC,证明略.
四.a‖b,m‖n‖l.
2.2探索直线平行的条件(2)
1.CE、BD,同位角;BC、AC,同旁内角;CE、AC,内错角;2.BC‖DE(答案不唯一);3.平行,内错角相等,两直线平行;4.C;5.C;6.D;7.(1)∠BED,同位角相等,两直线平行;(2)∠DFC,内错角相等,两直线平行;(3)∠AFD,同旁内角互补,两直线平行;(4)∠AED,同旁内角互补,两直线平行;8.B;9.C;10.B;11.C;12.平行,证明略;13.证明略;14.证明略;15.平行,证明略(提示:延长DC到H);
四.平行,提示:过E作AB的平行线.
2.3平行线的特征
1.110°;2.60°;3.55°;4.∠CGF,同位角相等,两直线平行,∠F,内错角相等,两直线平行,∠F,两直线平行,同旁内角互补;5.平行;6.①② ④(答案不唯一);7.3个 ;8.D;9.C;10.D;11.D;12.C;13.证明略;14.证明略;
四.平行,提示:过C作DE的平行线,110°.
2.4用尺规作线段和角(1)
1.D;2.C;3.D;4.C;5.C;6.略;7.略;8.略;9.略;
四.(1)略(2)略(3)①A② .
4.4用尺规作线段和角(2)
1.B;2.D;3.略;4.略;5.略;6.略;7.(1)略;(2)略;(3)相等;8.略;9.略;10.略;
四.略.
单元综合测试
1.143°;2.对顶角相等;3.∠ACD、∠B;∠BDC、∠ACB;∠ACD;4.50°;5.65°;6.180°;7.50°、50°、130°;8.α+β-γ=180°;9.45°;10.∠AOD、∠AOC;11.C;12.A;13.C;14.D;15.A;
16.D;17.D;18.C;19.D;20.C;21.证明略;22.平行,证明略;23.平行,证明略;24.证明略;
第三章 生活中的数据
3.1 认识百万分之一
1,1.73×10 ;2,0.000342 ; 3,4×10 ; 4,9×10 ; 5,C; 6,D;7,C ; 8,C; 9,C;10,(1)9.1×10 ; (2)7×10 ;(3)1.239×10 ;11, =10 ;10 个.
3.2 近似数和有效数字
1.(1)近似数;(2)近似数;(3)准确数;(4)近似数;(5)近似数;(6)近似数;(7)近似数;2.千分位;十分位;百分位;个位;百位;千位;3. 13.0, 0.25 , 3.49×104 , 7.4*104;4.4个, 3个, 4个, 3个, 2个, 3个;5. A;6、C;7. B ;8. D ;9. A ;10. B;
11.有可能,因为近似数1.8×102cm是从范围大于等于1.75×102而小于1.85 ×102中得来的,有可能一个是1.75cm,而另一个是1.84cm,所以有可能相差9cm.
12. ×3.14×0.252×6=0.3925mm3≈4.0×10-10m3
13.因为考古一般只能测出一个大概的年限,考古学家说的80万年,只不过是一个近似数而已,管理员却把它看成是一个精确的数字,真是大错特错了.
四:1,小亮与小明的说法都不正确.3498精确到千位的近似数是3×103
3.3 世界新生儿图
1,(1)24% ;(2)200m以下 ;(3)8.2%;
2,(1)59×2.0=118(万盒);
(2)因为50×1.0=50(万盒),59×2.0=118(万盒),80×1.5=120 (万盒),所以该地区盒饭销量最大的年份是2000年,这一年的年销量是120万盒;
(3) =96(万盒);
答案:这三年中该地区每年平均销售盒饭96万盒.
3.(1)王先生 2001年一月到六月每月的收入和支出统计图

(2)28:22:27:37:30:29;
4.(1)这人的射击比较稳定,心态好,所以成绩越来越好;
(2)平均成绩是8
(3)
5.解:(1)实用型生活消费逐年减少,保健品消费逐年增加,旅游性消费逐年增加:
(2)每年的总消费数是增加了
(3)

6.(1)大约扩大了:6000-500=5500(km)2
6000÷500=12.
(2)1960~1980年间,上海市市区及郊县的土地面积没有大的变化,说明城市化进程很慢.
(3)说明郊县的部分土地已经划为上海市区,1980年以后,上海市区及郊县的土地总面积和几乎不变,这说明1980年以后上海市区及郊县的土地总面积总和几乎不变,这说明1980年以后上海市在未扩大土地总面积的前提下,城市化进程越来越快,城市土地面各占总土地面积的比例越来越大(如浦东新区的开发等).
7,(1)由统计图知道税收逐年增加,因此2000年的税收在80到130亿元之间
(2)可获得各年税收情况等 (3)只要合理即可.
单元综合测试
1. 10-9; 2. 106 ;3.333×103;3. 0.0000502;4. 170, 6 ;5.百 , 3.3×104;6. 1.4×108 , 1.40×108;7.0.36 0.4;8. 1.346×105;9.A,10.B,11.C,12.C,13.A,14.D,15.B,16.C,17.B,18.B