如图Ⅰ,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S 1 、S 2 、S 3 表示,则不难证明S

2024-12-04 07:15:01
推荐回答(1个)
回答(1):

(1)∵S 3 =
π
8
AC 2 ,S 2 =
π
8
BC 2 ,S 1 =
π
8
AB 2
π
8
AC 2 +
π
8
BC 2 =
π
8
AB 2
π
8
b 2 +
π
8
a 2 =
π
8
c 2
在Rt△ABC中,
∵b 2 +a 2 =c 2
∴S 2 +S 3 =S 1

(2)S 1 =S 2 +S 3
理由:由题意可得出:S 1 =
3
4
AB 2 ,S 2 =
3
4
BC 2 ,S 3 =
3
4
AC 2
∴则S 1 =
3
4
c2,S 2 =
3
4
a2,S 3 =
3
4
b2
∴S 2 +S 3 =
3
4
(a2+b2)=
3
4
c2=S 1
即S 1 =S 2 +S 3

(3)由(1)(2)可得出:S 1 =S 2 +S 3