天文学的科学分支 :
天文学是公认最古老的科学,但是近年来太空探测计划及空间望远镜不断有所进展,所以天文学也算是极为现代的一门科学。
按照传统的科学分类观念,应该根据它所研究对象的差异来区分。但天文学的分支却比较特殊,它基本上是按历史发展和研究方法进行分类的。当然,最终也涉及它们的研究对象──天体。在天文学悠久的历史中,随研究方法的改进及发展,先后创立了天体测量学、天体力学和天体物理学。
1.天体测量学
这是天文学中最先发展起来的一个分支,主要任务是研究和测定天体的位置和运动,并建立基本参考坐标系和确定地面点的坐标。按照研究方法的不同,又分为下列二级分支。
(1)球面天文学
为确定天体的位置及其变化,首先要研究天体投影在天球上的坐标表示方式,各坐标之间的相互关系及其修正,如地球运动和大气折射所造成的位置误差,这是球面天文学的研究任务。
(2)方位天文学
对天体在宇宙空间的位置和运动的测定,则属于方位天文学的研究内容,它是天体测量学的基础。依据观测所用的技术方法和发展顺序,又可分为
①基本天体测量(精确测定天体的位置和自行,编制各种星表);
②照相天体测量(运用照相技术测定天体的位置,其优点是可直接测定较暗的天体的位置,并在同一种底片上一次测定许多颗恒星);
③射电天体测量(地面接收天体的无线电波并测量射电天体位置);
④空间天体测量学(飞出地球大气层以外进行测量)。
用上述方法把已经精确测定了位置的天体,作为天球上各个区域的标记,选定坐标轴的指向,在天球上确立一个基本的参考坐标系,用以研究天体在宇宙空间的位置和运动。
(3)实用天文学
以球面天文学为基础,即以天体作为参考坐标,研究并测定地面点的坐标。其中包括测定原理的研究、测量仪器的构造和使用、观测纲要的制定、测量结果的数据处理及其误差改正等问题。根据不同需要,实用天文学又可分为①时间计量;②极移测量;③天文大地测量;④天文导航等。
(4)天文地球动力学
是从研究地球各种运动状态和地壳运动而发展起来的一个次级分支。具体说,它是天体测量学与地学有关分支(如大地测量学、地球物理学、地质学和气象学等)之间的边缘学科。它的研究课题有地球自转、极移的规律、板块运动、固体潮、地球结构等。
天体测量学的历史可追溯到远古时期。为了指示方向、确定时间和季节,古人先后创造出日晷和圭表。经过漫长历史时期的进步,目前天体测量学的观测手段,已从可见光发展到射电波段以及其它波段的观测;在观测方式上,已由测角扩展到测距;观测所在地已由固定天文台发展为流动站、全球性组网观测和空间观测;观测精度已接近0.″0001级(测角)和厘米级(测距);观测的对象也在向暗星、星系、射电源和红外源等方面扩展。现代天体测量学的内容越来越丰富,观测精度越来越高。目前正在探索建立更理想的参考坐标系,它必将进一步推动天体测量学,尤其是天文地球动力学的研究和发展。
2.天体力学
天体力学是研究天体运动和天体形状的科学。它以万有引力定律为基础,研究天体在万有引力和其它力综合作用下的运动规律、天体自转和其它引力因素综合作用所具有的形状。根据研究的对象、范围和方法,天体力学又可分为下列二级学科:
(1)摄动理论
研究多个质点在万有引力相互作用下的运动规律,是天体力学的基本理论之一,即所谓"多体问题"。其中最简单的一种是 二体问题 ,目前讨论最多、用途也最多的是 三体问题 。研究某天体的二体问题轨道在各种因素干扰下的规律,就叫做"摄动理论"。在太阳系内,有大行星运动理论、小行星运动理论、卫星运动理论等。
(2)天体力学定性理论
它并不具体求出天体运动轨道,而是从多体问题的运动方程出发,探讨这些轨道的性质。
(3)天体力学数值方法
即天体力学中运动方程的数值解法,其主要任务是研究和改进已有的各种计算方法。近年来,电子计算机技术的迅速发展,为数值方法开辟了广阔的前景,计算机可以直接快捷地计算出天体在任何时刻的具体位置,使以往大量天体力学的实际问题得以解决。天体力学数值方法属于定量研究方法。
(4)历书天文学
根据天体运动理论,从天体的观测数据确定天体轨道参数,编制各种天体位置表、天文年历以及推算各种天象。
(5)天体的形状和自转理论
自转运动同天体的形状有密切关系,而天体的形状对天体间的吸引力状况又有影响。因此,自牛顿开创这一理论以来,它主要研究各种物态天体在自转时的平衡状态、稳定性以及自转角速度和自转轴的变化规律。近年来,利用空间探测技术得到了地球、月球和几个大行星的形状及引力场方面的大量数据,为进一步建立这些天体形状和自转理论提供了丰富的资料。
(6)天体动力学
人造天体的出现,给天体力学增添了新的重要研究对象,在经典天体力学基础上,又建立了人造天体的运动理论。人造天体包括各种人造地球卫星、月球火箭和各种行星际探测器。它们在发射时都需设计和确定轨道,这已成为现代天体力学的主要研究内容之一。因此,天体动力学是天体力学和星际航行学之间的边缘学科。
3.天体物理学 天体物理学是运用物理学的技术、方法和理论,研究天体形态、结构、化学组成、物理状态和演化规律的科学。它按照研究对象和研究方法的不同,又有下列分支学科:
(1)太阳物理学
太阳是离地球最近的一颗恒星,人们可以观测它的表面细节。对太阳的研究,经历了从研究它的内部结构、能量来源、化学组成和静态表面结构,到使用多波段电磁辐射研究它的活动现象及其过程等阶段。地球与太阳关系密切,对地球的研究,必须考虑日对地的影响。
(2)太阳系物理学
是研究太阳系内行星、卫星、彗星、流星等各种天体的物理状况的科学。近年来,对彗星的研究以及对行星际物质的分布、密度、温度和化学组成等方面的研究都取得了重要成果。由于行星际探测器的成功发射,人类关于太阳系其它行星的知识日新月异。
(3)恒星物理学
它的研究对象是恒星。银河系有近2000亿颗恒星,其物理状态千差万别,除普通恒星外,还有各式各样的特殊恒星。如亮度呈周期性或不规则变化的变星,亮度突然增强的新星和超新星,密度极大的白矮星和中子星等。它们为研究恒星的形成和演化规律提供了丰富的案例。另外,一些特殊天体上的极端物理条件,是天体物理学家最感兴趣而在地球上又无法建立"实验室"。
(4)星系天文学
是研究星系的结构和演化规律的一个分支,包括对银河系、河外星系以及星系团的研究。
(5)高能天体物理学
主要研究发生在宇宙天体上的高能现象和高能过程。宇宙中的高能现象和过程多种多样,其研究对象有超新星、类星体、脉冲星、宇宙X射线、宇宙γ射线、星系核活动等。它是自20世纪60年代后逐渐发展并日益活跃起来的天体物理学中的一个新分支。
(6)恒星天文学
它主要研究银河系内恒星的分布和运动,以及银河系的结构等。
(7)天体演化学
研究各种天体以及天体系统的起源和演化,即它们在什么时候,从什么形态的物质,以什么方式形成的;形成后它们又怎样演变(发展和衰亡)的。其研究内容有太阳系、恒星和星系的起源和演化。
(8)射电天文学
它是通过观测天体的无线电波来研究天文现象的一门学科。它以无线电接收技术为观测手段,观测对象遍及所有天体,从太阳系天体到银河系,以及银河系以外的各种观测目标。
(9)空间天文学
是在高层大气和大气外层空间区域进行天文观测的一门学科。其优越性显而易见,主要是它突破地球大气层屏障,扩展了天文观测波段,取得观测来自外层空间整个电磁波谱的可能性。此外,还可直接获取观测天体的样品,如从月球采集月岩等,开创了直接探索和研
究天体的新时代。空间天文学研究始于20世纪40年代,从发射探空气球和探空火箭,到现在的人造地球卫星、登月飞船、行星际探测器、空间实验室和太空望远镜,给空间天文学研究开辟了广阔的前景。