数独的历史背景是什么?

2024-12-01 05:39:27
推荐回答(1个)
回答(1):

起源
既然“数独”有一个字是“数”,人们也往往会联想到数学,那就不妨从大家都知道的数学家欧拉说起,但凡想了解数独历史的玩家在网络、书籍中搜索时,共同会提到的就是欧拉的“拉丁方块(Latin square)”,如下图:
拉丁方块的规则:每一行(Row)、每一列(Column)均含1-N(N即盘面的规格),不重复。这与前面提到的标准数独非常相似,但少了一个宫的规则。
在中国,它在不同时期有不同的名字。其表现形式也随历史发展有不同的变幻。远古时期称为河图洛书。
东汉记载
中国东汉末年郑玄(129~200)注《易纬·乾凿度》:“太乙取其数以行九宫,四正四维皆合于十五”而得九宫数,即三阶幻方(左图[三阶纵横图])。西魏北周卢注《礼记·明堂篇》“二九四、七、五、三、六、一、八”有法龟文之说,后周甄鸾注《数术记遗》云:“九宫者,二、四为肩,六、八为足,左三右七,戴九履一,五居中央。”亦与龟文之说暗合。古人在龟甲或骨上用火灼出窝槽,爆见吉祥之兆,有时这种窝槽的排列有了某种特殊的意义,令人惊异,于是成为世代相传的神话。可见,九宫图由来已久。
中的记载
南宋记载
南宋杨辉《续古摘奇算法》(1275)卷一始有“纵横图”之名,其中给出了三至十阶的幻方及其变体共十三种。杨辉给出的方形纵横图共有十三幅,它们是:洛书数(三阶幻方)一幅,四四图(四阶幻方)两幅,五五图(五阶幻方)两幅,六六图(六阶幻方)两幅,七七图(七阶幻方)两幅,六十四图(八阶幻方)两幅,九九图(九阶幻方)一幅,百子图(十阶幻方)一幅(参见图1-9-3)。其中还给出了“洛书数”和“四四阴图”的构造方法。如“洛书数”的构造方法为:“九子斜排,上下对易,左右相更,四维挺出”。
元代记载
元代安西王府旧址(今西安市郊)曾出土至元十五年(1278)阿拉伯学者扎马鲁丁为安西王推算历法期间所制作的“东阿拉伯系统”数码的铁制六阶幻方(1956年出土,(见彩图[阿拉伯数学幻方铁板(元代) 陕西安西王府遗址出土])。上海浦东陆家嘴明嘉靖陆深墓中也发现元代玉质可佩挂的四阶幻方(1980年出土)。
明代记载
明王文素《算学宝鉴》(1524)载纵横图多种。程大位《算法统宗》(1592)卷十七载纵横图14种,及清方中通《数度衍》(1661)卷首之一“九九图说”后附纵横图14种,与杨辉所著《续古摘奇算法》中所载纵横图大同小异。
张潮 (1650~?)《心斋杂俎》卷下“算法图补”增补纵横图若干种。梅成《增删算法统宗》(1760)淘汰有关河图洛书及纵横图的内容之后,纵横图存在约有一百多年。
清代记载
清初、传教士传入《三三等数图》列三至十阶纵横图八种,并指出作图方法。英国人傅兰雅主编的《格致汇编》(1878)载有四阶纵横图(图2[四阶纵横图]),此即1514年A.度勒所刻十六字方图。欧洲研求纵横图造法始自14世纪。中国人杜亚泉(1872~1933)等从1900年起论及纵横图的造法,但多沿用西说。

近代发展
数独起源于18世纪初瑞士数学家欧拉等人研究的拉丁方阵(Latin Square)。19世纪80年代,一位美国的退休建筑师格昂斯(Howard Garns)根据这种拉丁方阵发明了一种填数趣味游戏,这就是数独的雏形。20世纪70年代,人们在美国纽约的一本益智杂志《Math Puzzles and Logic Problems》上发现了这个游戏,当时被称为填数字(Number Place),这也是目前公认的数独最早的见报版本。1984年一位日本学者将其介绍到了日本,发表在Nikoli公司的一本游戏杂志《パズル通信ニコリ》上,当时起名为“Suuji wa dokushin ni kagiru”,后来觉得这个名字太长,就改名为“sudoku”,其中“su”是数字的意思,“doku”是单一的意思。这个名字也是国际上对数独的比较通用的叫法。后来一位前任香港高等法院的新西兰籍法官高乐德(Wayne Gould)在1997年3月到日本东京旅游时,无意中发现了。他首先在英国的《泰晤士报》上发表,不久其他报纸也发表,很快便风靡全英国,之后他用了6年时间编写了电脑程式,并将它放在网站上(这个网站也就是著名的数独玩家论坛),后来因一些原因,网站被关闭,幸好数独大师Glenn Fowler恢复了数据,玩家论坛有了新处所。在90年代国内就有部分的益智类书籍开始刊登,南海出版社在2005年出版了《数独1-2》,随后日本著名数独制题人西尾彻也的《数独挑战》也由辽宁教育出版社出版。《北京晚报》、《扬子晚报》、《羊城晚报》、《新民晚报》、《成都商报》等等报纸媒体也先后刊登了数独游戏。