分部积分法是一种怎样的方法?怎样的不定积分可以运用分部积分公式来计算

2024-11-07 11:35:21
推荐回答(1个)
回答(1):

分部积分,integral by parts,是适用于三种情况的积分方法:

1、可以逐步降低幂次的积分
例如:
∫x⁴sinxdx = -∫x⁴dcosx = -x⁴cosx + 4∫x³cosxdx + c
这样一来,x 的幂次就降低了,以此类推,就积出来了。

2、可以将对数函数转化成代数函数的积分
例如:
∫x³lnxdx = (1/4)∫lnxdx⁴ = (1/4)x⁴lnx - (1/4)∫x³dx + c
这样一来,lnx 就消失了,就轻而易举地可以积出来了。

3、可以将积分过程当成解代数方程一样解的积分
例如:
∫(e^x)sinxdx、∫(e^x)cosxdx、∫(e^-2x)sin3xdx、∫(e^-4x)cosxdx、、、、。