解:
(1)
由等差中项性质,得:
a2=(a1+a3)/2=8/2=4
a3=(a2+a4)/2=12/2=6
d=a3-a2=6-4=2
a1=a2-d=4-2=2
an=a1+(n-1)d=2+2(n-1)=2n
Sn=(a1+an)n/2=(2+2n)n/2=n²+n
(2)
1/Sn=1/(n²+n)=1/[n(n+1)]=1/n -1/(n+1)
1/S1+1/S2+...+1/Sn
=1/1 -1/2 +1/2 -1/3+...+1/n -1/(n+1)
=1- 1/(n+1)
=n/(n+1)
1/S1+1/S2+...+1/Sn=999/1000
n/(n+1)=999/1000
解得n=999
n的值为999。