给定数列1,2+3+4,5+6+7+8+9,10+11+12+13+14+15+16,...求该数列的通项公式.(详细)

2024-11-20 11:06:58
推荐回答(2个)
回答(1):

S<1>=1,S<2>=1+2+3+4,S<3>=1+2+3+…+9,
故S=1+2+…+n²=n²(1+n²)/2
a=S-S=[n²(1+n²)/2]-(n-1)²[1+(n-1)²]/2
=2n³-3n²+3n-1

回答(2):

根据规律,可以得出,第n项共有2n-1项.
所以前面共有1+3+5+…+(2n-3)=(n-1)^2=n^2-2n+1
所以an=(n^2-2n+2)+(n^2-2n+3)+(n^2-2n+4)+……+(n^2-2n+2n)
=(2n-1)(n^2-2n+2+n^2)/2=2n^3-3n^2+3n-1.