tan∠ABC=AC/BC=2,BC=5,
∴AC=10,AB=5√5,
∠DBC=∠A,
∴△BCD∽△ACB,
∴CD/CB=BC/AC,
∴CD=BC^2/AC=2.5=AC/4,
CE⊥AB,
∴AC^2=AE*AB,AE=4√5,EB=√5,
CE=√(AE*EB)=2√5.
以EB,EC为x,y轴建立直角坐标系,则A(-4√5,0),C(0,2√5),M(0,-2√5),
D(-√5,(3/2)√5),
DE:y=-3x/2与圆O:(x+3√5/2)^2+y^2=125/4交于点N((2√305-6√5)/13,(9√5-3√305)/13),
∴MN^2=[(2√305+7√5)/13]^2+[(-21√5-6√305)/26]^2
=(1220+140√61+245)/169+(2205+1260√61+10980)/676
=(1465+140√61)/169+(13185+1260√61)/676
=(19045+1820√61)/676,
∴MN=√(19045+1820√61)/26.
MN大约等于2.5