1^2+2^2+3^2+......n^2怎么算,过程

2024-11-03 08:31:38
推荐回答(3个)
回答(1):

1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6。解题过程如下:

解:因为(n+1)^3=n^3+3n^2+3n+1

则(n+1)^3-n^3=3n^2+3n+1

n^3-(n-1)^3=3(n-1)^2+3(n-1)+1

............

3^3-2^3=3*2^3+3*2+1

2^3-1^3=3*1^3+3*1+1

把等式两边同时求和得,

(n+1)^3-1^3

=(3n^2+3(n-1)^2+......+3*2^2+3*1^2)+(3n+3(n-1)+......+3*2+3*1)+n

=3(n^2+(n-1)^2+......+2^2+1^2)+3(n+(n-1)+......+2+1)+n

=3(n^2+(n-1)^2+......+2^2+1^2)+3*n(n+1)/2+n

即,n^3+3n^2+3n=3(n^2+(n-1)^2+......+2^2+1^2)+3*n(n+1)/2+n

整理得,n^2+(n-1)^2+......+2^2+1^2=n(n+1)(2n+1)/6

即,1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6

扩展资料:

数列求和的方法

1、公式法

(1)等差数列求和公式:Sn=1/2*n(a1+an)=d/2*n+(a1-d/2)*n

(2)等比数列求和公式:Sn=na1(q=1)、Sn=a1*(1-q^n)/(1-q)(q≠1)

(3)自然数求和公式:(1+2+3+...+n)=n(n+1)/2

2、错位相减法

3、倒序相加法

4、分组法

5、裂项相消法

(1)1/(n*(n+1))=1/n-1/(n+1)

(2)1/((2n-1)*(2n+1))=1/2(1/(2n-1)-1/(2n+1))

参考资料来源:百度百科-数列求和

参考资料来源:百度百科-平方和公式

回答(2):

求^2就从^3入手,求^3就从^4入手,求^t就从^(t+1)入手

因为(n+1)^3=n^3+3n^2+3n+1
所以2^3=1^3+3*1^2+3*1+1
3^3=2^3+3*2^2+3*2+1
……
(n+1)^3=n^3+3n^2+2n+1
<一共有n个等式>
所以2^3+3^3+……+(n+1)^3=1^3+2^3+……+3*(1^2+2^2+……+^2)+3(1+2+……+n)+(1+1+……+1)
所以3(1^2+2^2+……+n^2)=n^3+3n^2+2n+1-a-3-[n(n+1)]/2-n
所以S(An)=1^2+2^2+……+n^2=(n^3+3n^2+3n)/3-n(n+1)/2-n/3=n(n+1)(2n+1)/6

回答(3):

1^2+2^2+3^2+......n^2 =
n(n+1)(2n+1)/6