证明:原式=1+2/(√2+√2)+2/(√3+√3)+2/(√4+√4)+...2/(√n+√n) <1+2/(√轿扒2+√1)山李+2/(√3+√2)+2/(√4+√3)+...2/(√闭唯昌n+√n-1) =1+2(√2-√1)+2(√3-√2)+2(√4-√3)+...2(√n-√n-1) =1+2(√n-1)=2√n-1<2√n