1=x-(x-1)所以1/(x*(x-1)^2)=x/(x*(x-1)^2) - (x-1)/(x*(x-1)^2)=1/(x-1)^2 - 1/(x*(x-1))其中后半部分又可以分解为1/(x-1) -1/x于是分解为 1/(x-1)^2 dx - 1/(x-1) dx + 1/x dx分别积分得 1/(x-1) - ln(x-1) + lnx + C