求助一道高数题 设z=f(x,y^2⼀x),其中f具有二阶连续偏导数,则

2024-11-17 23:31:35
推荐回答(2个)
回答(1):

解析:

az/ax=yf[1]+2xf[2]

a^2z/ax^2

=y(yf[11]+2xf[12])+2f[2]+2x(yf[21]+2xf[22])

=y^2f[11]+4xyf[12]+4x^2f[22]+2f[2]

注:f[ ]表示对方括号中的下标变量求偏导。此处1代表xy,2代表x^2-y^2。

求二阶偏导数的方法:

当函数z=f(x,y)在(x0,y0)的两个偏导数f'x(x0,y0)与f'y(x0,y0)都存在时,我们称f(x,y)在(x0,y0)处可导。如果函数f(x,y)在域D的每一点均可导,那么称函数f(x,y)在域D可导。

此时,对应于域D的每一点(x,y),必有一个对x(对y)的偏导数,因而在域D确定了一个新的二元函数,称为f(x,y)对x(对y)的偏导函数。简称偏导数。

按偏导锋迅数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。

设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点。把y固定在y0而让x在x0有增量△x,相应地银渗此函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果△z与△x之比当△x→0时的极限存在,那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数,记作f'x(x0,y0)或函数z=f(x,y)在(x0,y0)处对x的偏导数。

把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数。同样,把x固定在x0,让喊纳y有增量△y,如果极限存在那么此极限称为函数z=(x,y)在(x0,y0)处对y的偏导数。记作f'y(x0,y0)。

回答(2):



这是启旦链详迟改细悄孙过程