1*2+2*3+3*4+4*5+5*6+6*7+7*8+8*9………+9999*10000

1*2+2*3+3*4+4*5+5*6+6*7+7*8+8*9………+9999*10000=
2024-11-09 05:07:18
推荐回答(4个)
回答(1):

因为 k*(k+1) = k² + k
所以 1*2 + 2*3 + 3*4 + ... + n*(n+1)
= (1²橘碰+1) + (2²+2) + (3²+3) + ... + (n²+n)
= (1²+2²+3²+...+n²) + (1+2+3+...+n)
= n(n+1)(2n+1)/6 + n(n+1)/2
= [n(n+1)/颂巧6] * (2n+1+3)
= n(n+1)(n+2)/3

本题中n=9999
所以
n(n+1)(n+2)/圆樱谈3
=9999*10000*10001
=999999990000

回答(2):

一加一万乘一万除以二
即首数加尾数乘个数除以二

回答(3):

100000

回答(4):

解:因为闷者敏 k(k+1)=k²+k
所以 1*2+2*3+3*4+4*5+5*6+6*7+7*8+8*9+9*10+10*11
````=1²+1+2²+2+3²+3+4²+4+5²+5+6²+6+7²+7+8²+8+9²+9+10²+10
```=1²+2²+3²+4²+5²+6²+7²+8²+9²嫌让+10²+1+2+3+4+5+6+7+8+9+10
```=10(10+1)(2*10+1)/6+10(1+10)/2
```=385+55
```=440
以此类蚂枝推