高等数学指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。
广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
自学高数书籍推荐:
1、《高等数学》——同济大学第六版
该书是同济大学数学系编《高等数学》的第六版,依据最新的“工科类本科数学基础课程教学基本要求”,为高等院校工科类各专业学生修订而成。
第六版修订对教材的深广度进行了适度的调整,使学习本课程的学生都能达到合格的要求,并设置部分带*号的内容以适应分层次教学的需要;吸收国内外优秀教材的优点对习题的类型和数量进行了调整和充实,以帮助学生提高数学素养、培养创新意识、掌握运用数学工具去解决实际问题的能力;对书中内容进一步锤炼和调整,将空间解析几何与向量代数移到下册与多元函数微积分一同讲授,更有利于学生的学习。
2、《陶哲轩教你学数学》——陶哲轩
此书之精华就在于讲解题思路,他对同一个题目,会讲很长的篇幅,详细讲解他解一个题目的时候试了哪几种方法,为啥要这么试,哪些走不通,哪些能走通。总结一句话就是,把顶尖数学家解题的思维方式展现在了你面前。
3、《高观点下的初等数学》——克莱因
该书反映了他对数学的许多观点,向人们生动地展示了一流大师的遗风,出版后被译成多种文字,是一部数学教育的不朽杰作,影响至今不衰。
4、《数学分析教程》——高等教育出版社
上册的内容为一元微积分学与多元微分学,下册的内容为多元积分学、无穷级数、广义积分及傅氏级数等。作者根据多年的教学实践经验,对数学分析的内容体系作了精心的构架与调整,分散了难点,突出了分析学的基础知识与基本训练,使全书内容深入浅出、平实自然、有用有趣。
我以前是用同济的高数,每道题都做。不过因为原先学得比较浅的关系,先用我妈当年在农村自学高数的中专教材学了一点微积分和线性代数。
满意请采纳