大数据都有哪些就业方向?

2024-12-01 09:26:37
推荐回答(5个)
回答(1):

大数据领域的就业岗位还是比较多的,尤其是大数据开发岗位,目前正逐渐从大数据平台开发向大数据应用开发领域覆盖。

大数据是目前互联网行业的新兴领域,人才需求大,薪资高,学好大数据之后,能够胜任的岗位也是很多的,比如大数据开发工程师、大数据分析师、大数据运维工程师、Spark工程师、Python爬虫工程师等等。我有全套大数据视频课资料+软件安装包,自取自学。

大数据学习内容主要有:

①JavaSE核心技术;

②Hadoop平台核心技术、Hive开发、HBase开发;

③Spark相关技术、Scala基本编程;

④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;

⑤大数据项目开发实战,大数据系统管理优化等。

你可以考察对比一下开设有IT专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力。祝你学有所成,望采纳。

回答(2):

大数据开发主要负责大数据的挖掘、数据清洗以及数据建模工作,简单来说就是负责处理和应用数据,通常会配合大数据可视化分析工程师,挖掘出有价值的数据,为企业提供业务发展支持,也就是数据驱动业务快速增长。
1、大数据开发工程师
精通常用的数据结构和算法,理解面向对象设计的基本原则,熟悉常用的设计模式;掌握Hadoop生态体系框架,包括Hadoop、Hive、Spark、Storm、Flink、ElasticSearch、HBase等;对数据仓库的设计、开发和维护。
2、大数据运维工程师
负责大数据基础平台的运维,保障平台的稳定可用;负责应用产品部署、上线及维护;负责大数据平台资源管理、性能优化和故障处理;深入研究大数据业务相关运维技术,持续优化集群服务架构;参与设计大数据自动化运维、监控、故障处理工具。
3、大数据分析师/挖掘算法工程师
工作主要以数据分析挖掘为主,通常需要负责常规业务数据分析需求开发,用户画像构建,推荐算法实现等。
岗位要求:
熟悉数据仓库理论、数据挖掘理论基础,熟悉常用机器学习算法(如逻辑回归、神经网络、决策树、贝叶斯等);对Hadoop和Spark生态当中的主流技术组件,有相应程度的了解。

回答(3):

1、大数据系统研发工程师

这一专业人才负责大数据系统研发,包括大规模非结构化数据业务模型构建、大数据存储、数据库构设、优化数据库构架、解决数据库中心设计等,同时,还要负责数据集群的日常运作和系统的监测等,这一类人才是任何构设大数据系统的机构都必须的。
2、大数据应用开发工程师

此类人才负责搭建大数据应用平台以及开发分析应用程序,他们必须熟悉工具或算法、编程、优化以及部署不同的MapReduce,他们研发各种基于大数据技术的应用程序及行业解决方案。其中,ETL开发者是很抢手的人才,他们所做的是从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要,将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,末后加载到数据仓库,成为联机分析处理、数据挖掘的基础,为提取各类型的需要数据创造条件。

3、大数据分析师

此类人才主要从事数据挖掘工作,运用算法来解决和分析问题,让数据显露出真相,同时,他们还推动数据解决方案的不断更新。随着数据集规模不断增大,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapReduce、Pig等的需求将持续增长,具备Hadoop框架经验的技术人员是很抢手的大数据人才,他们所从事的是热门的分析师工作。

回答(4):

大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。

回答(5):

大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 [1] 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。