先分解因式,再用双曲函数代换,积出来了,不过最后一步,你自己再代换回x的函数,我就不帮你做了,好吗?
好长的计算啊!!!你老师说的对,确实要用三角代换。
结果是:
1/128*(243*log(2*sqrt(x^2-x-2)+2x-1))+2sqrt(x^2-x-2)*(16x^3-24*x^2-78x+43))+常数。
哥们,这题做完得花很多时间啊。
给你点提示:
integral (-2-x+x^2)^(3/2) dx
=integral ((x-1/2)^2-9/4)^(3/2) dx
=integral (u^2-9/4)^(3/2) du
∫(x^2-x-2)^(3/2)dx
=∫[(x-1/2)^2-2-1/4]^(3/2)dx
=∫(9/4)^(3/2)[(4/9)(x-1/2)^2-1]^(3/2)dx
=(27/8)∫[(2x/3-1/3)^2-1]^(3/2)dx
令u=1/(2x/3-1/3),则x=3/2u+1/2,dx=(-3/2u^2)du
原式=(27/8)∫(1/u^2-1)^(3/2)*(-3/2u^2)du
=(-81/16)∫(1/u^2-1)√(1/u^2-1)/u^2du
=(-81/16)∫(1-u^2)√(1-u^2)/u^5du
再令sinα=u,则du=cosαdα
原式=(-81/16)∫[(1-sinα^2)√(1-sinα^2)/sinα^5]cosαdα
=(-81/16)∫[cosα^4/sinα^5dα
=(-81/16)∫(-1/4)cosα^3d(1/sinα^4)
=(81/64)[cosα^3/sinα^4-∫(1/sinα^4)d(cosα^3)]
=(81/64)[cosα^3/sinα^4+3∫cosα^2/sinα^3dα]
=(81/64)[cosα^3/sinα^4+3∫(-1/2)cosαd(1/sinα^2)]
=(81/64){cosα^3/sinα^4-(3/2)[cosα/sinα^2-∫1/sinα^2d(cosα)]}
=(81/64)[cosα^3/sinα^4-(3/2)(cosα/sinα^2+∫1/sinαdα)]
=(81/64)[cosα^3/sinα^4-(3/2)(cosα/sinα^2+v)]
其中v=∫1/sinαdα=∫1/(1-cosα^2)d(-cosα)
令t=-cosα,则v=∫1/(1-t^2)dt
v=(1/2)∫[1/(1+t)+1/(1-t)]dt
=(1/2)[∫1/(1+t)dt+∫1/(1-t)dt]
=(1/2)[ln(1+t)-ln(1-t)]+C
=(1/2)ln[(1+t)/(1-t)]+C
=(1/2)ln[(1-cosα)/(1+cosα)]+C
代入原式加以整理即可。
送你一句话:少壮不努力,老大徒伤悲!!!!!!!!!!!!!!!!!!!