因为当x→0时,lim(x→0)(ln(x+1)/x)=lim(x→0)(1/(1+x)/1)=1(洛必达法则)。所以lim(x→0)(ln(1+x))=lim(x→0)(x)。所以是等价无穷小
lim(x→0)[x+ln(x+1)]/x=lim(x→0)[1+1/(x+1)]/1洛必达法则=2∴当x趋近于0时,与x+ln(x+1)是等价无穷小的量是2x