在三角形ABC中a,b,c分别为内角ABC的对边,且2asinA=(2b-c)sinB+(2c-b

2024-11-30 13:30:59
推荐回答(1个)
回答(1):

1.2asinA=(2b-c)sinB+(2c-b)sinC,
由正弦定理,2a^=(2b-c)b+(2c-b)c=2b^+2c^-2bc,
∴b^+c^-a^=bc,
由余弦定理,cosA=1/2,
∴A=60°。
2.B+C=120°,
√3=sinB+sinC=2sin[(B+C)/2]cos[(B-C)/2]=√3cos[(B-C)/2],
∴cos[(B-C)/2]=1,
∴B=C=60°,
∴△ABC是等边三角形。