用数学归纳法证明 1*n+2*(n-1)+3*(n-2)+.......+n*1={n(n+1)(n+2)}⼀6

2025-04-14 05:39:31
推荐回答(1个)
回答(1):

解:当n=1时,左边=1*1=1,右边=1*2*3/6=1,左边=右边,等式成立假设当n=k时,等式成立,则1*k+2*(k-1)+3*(k-2)+……+k*1=k(k+1)(k+2)/6当n=k+1时,
1*(k+1)+2*k+3*(k-1)+……+k*2+(k+1)*1=[(1*k)+1]+[2(k-1)+2]+[3(k-2)+2]+……+[(k*1)+k]+(k+1)=[1+2+3+……+k+(k+1)]+[1*k+2*(k-1)+3*(k-2)+……+k*1]=(k+1)(k+2)/2
+
k(k+1)(k+2)/6=(k+1)(k+2)(k+3)/6=(k+1)[(k+1)+1][(k+1)+2]/6所以等式成立即1*n+2*(n-1)+3*(n-2)+.......+n*1={n(n+1)(n+2)}/6