高等数学.用比较判别法判别级数的敛散性. 1⼀(n+1)(n+4),n=1到无穷大

2024-11-09 02:10:04
推荐回答(1个)
回答(1):

0 < 1/(n+1)(n+4) =< 1/n(n+1)=1/n-1/(n+1)
因此Sn=1-1/2+1/2-1/3+1/3-1/4+...+1/(n-1)-1/n+1/n-1/(n+1)=1-1/(n+1)
所以lim(n→无穷)Sn=1

这里用的是列项相加法,是已知通项公式求数列前n项和的典型方法,适用于通项公式为分式的情况,然后进行部分分是展开。根据通项公式的不同还有其他求求解数列的部分和.