已知a-b=√3+√2,b-c=√3-√2,求a²+b²+c²-ab-ac-bc的值。
解:将两个已知相加,得:a-c=2√3,有:
a²+b²+c²-ab-ac-bc
=1/2×[2a²+2b²+2c²-2ab-2ac-2bc]
=1/2×[(a²-2ab+b²)+(b²-2bc+c²)+(a²-2ac+c²)]
=1/2×[(a-b)²+(b-c)²+(a-c)²]
=1/2×[(√3+√2)²+(√3-√2)²+(2√3)²]
=1/2×[5+2√6+5-2√6+12]
=1/2×22
=11
所求=1/2[(a-b)平方+(a-c)平方+(b-c)平方]
a-c=2倍根号3
所以所求=11