作为一名数据科学家Python需要掌握到什么程度

2024-11-17 11:21:32
推荐回答(1个)
回答(1):

数据科学家算是统计师和程序员的结合体,来源也主要是这两个专业的毕业生。不过这两个群体的思维方式还真的是不一样。可以认为,统计的人更加偏爱R,程序员更偏爱python。

其实python有了pandas才能使数据分析变的像R那样简单。数据科学家能把python用的像R一样我觉得就好了。不过如果除了数据分析,公司要求代码的重用性,或者直接嵌入到产品中(比如网站推荐系统),那么对编程的要求就更高了。
其实数据科学家在做数据分析的时候,起码80%的时间是在做数据整理和清洗,熟练使用pandas就好,这意味着能熟练的清理掉不必要数据,读取主要的数据格式文件,数据的合并汇总归类和切片等等。数据整理好比学编程要最起码能控制if-else和for循环,命令简单但是实用。
数据整理好了,对于各种算法包里的函数,其实就是input output的问题了。
另外一个常用的就是数据可视化也就是绘图了(目前主要是matplotlib)。这个步骤对于input的数据就是数据探索化的过程,查看数据是否有不合理性,数据的分布等等,对于output的数据就是结果呈现的过程,这样更有助于分析。

总而言之,数据科学家熟悉python的基本语法,熟练pandas(基于numpy),能利用python熟练的获取数据,整理数据,并会使用matplotlib展现数据是一个基本的要求。对于要做科学计算或者机器学习来说,数据整理好了,编程不是问题,数学才是。