█急求▉高一完整物理知识整理

█急求▉高一完整物理知识整理,谢谢啦~~
2024-11-22 06:03:42
推荐回答(3个)
回答(1):

第一章 力
定义:力是物体之间的相互作用。
理解要点:
(1)力具有物质性:力不能离开物体而存在。
说明:①对某一物体而言,可能有一个或多个施力物体。
②并非先有施力物体,后有受力物体
(2)力具有相互性:一个力总是关联着两个物体,施力物体同时也是受力物体,受力物体同时也是施力物体。
说明:①相互作用的物体可以直接接触,也可以不接触。
②力的大小用测力计测量。
(3)力具有矢量性:力不仅有大小,也有方向。
(4)力的作用效果:使物体的形状发生改变;使物体的运动状态发生变化。
(5)力的种类:
①根据力的性质命名:如重力、弹力、摩擦力、分子力、电磁力、核力等。
②根据效果命名:如压力、拉力、动力、阻力、向心力、回复力等。
说明:根据效果命名的,不同名称的力,性质可以相同;同一名称的力,性质可以不同。
重力
定义:由于受到地球的吸引而使物体受到的力叫重力。
说明:①地球附近的物体都受到重力作用。
②重力是由地球的吸引而产生的,但不能说重力就是地球的吸引力。
③重力的施力物体是地球。
④在两极时重力等于物体所受的万有引力,在其它位置时不相等。
(1)重力的大小:G=mg
说明:①在地球表面上不同的地方同一物体的重力大小不同的,纬度越高,同一物体的重力越大,因而同一物体在两极比在赤道重力大。
②一个物体的重力不受运动状态的影响,与是否还受其它力也无关系。
③在处理物理问题时,一般认为在地球附近的任何地方重力的大小不变。
(2) 重力的方向:竖直向下(即垂直于水平面)
说明:①在两极与在赤道上的物体,所受重力的方向指向地心。
②重力的方向不受其它作用力的影响,与运动状态也没有关系。
(3)重心:物体所受重力的作用点。
重心的确定:①质量分布均匀。物体的重心只与物体的形状有关。形状规则的均匀物体,它的重心就在几何中心上。
②质量分布不均匀的物体的重心与物体的形状、质量分布有关。
③薄板形物体的重心,可用悬挂法确定。
说明:①物体的重心可在物体上,也可在物体外。
②重心的位置与物体所处的位置及放置状态和运动状态无关。
③引入重心概念后,研究具体物体时,就可以把整个物体各部分的重力用作用于重心的一个力来表示,于是原来的物体就可以用一个有质量的点来代替。
弹力
(1) 形变:物体的形状或体积的改变,叫做形变。
说明:①任何物体都能发生形变,不过有的形变比较明显,有的形变及其微小。
②弹性形变:撤去外力后能恢复原状的形变,叫做弹性形变,简称形变。
(2)弹力:发生形变的物体由于要恢复原状对跟它接触的物体会产生力的作用,这种力叫弹力。
说明:①弹力产生的条件:接触;弹性形变。
②弹力是一种接触力,必存在于接触的物体间,作用点为接触点。
③弹力必须产生在同时形变的两物体间。
④弹力与弹性形变同时产生同时消失。
(3)弹力的方向:与作用在物体上使物体发生形变的外力方向相反。
几种典型的产生弹力的理想模型:
① 轻绳的拉力(张力)方向沿绳收缩的方向。注意杆的不同。
② 点与平面接触,弹力方向垂直于平面;点与曲面接触,弹力方向垂直于曲面接触点所在切面。
③ 平面与平面接触,弹力方向垂直于平面,且指向受力物体;球面与球面接触,弹力方向沿两球球心连线方向,且指向受力物体。
(4)大小:弹簧在弹性限度内遵循胡克定律F=kx,k是劲度系数,表示弹簧本身的一种属性,k仅与弹簧的材料、粗细、长度有关,而与运动状态、所处位置无关。其他物体的弹力应根据运动情况,利用平衡条件或运动学规律计算。
摩擦力
(1) 滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。
说明:①摩擦力的产生是由于物体表面不光滑造成的。
②摩擦力具有相互性。
ⅰ滑动摩擦力的产生条件:A.两个物体相互接触;B.两物体发生形变;C.两物体发生了相对滑动;D.接触面不光滑。
ⅱ滑动摩擦力的方向:总跟接触面相切,并跟物体的相对运动方向相反。
说明:①“与相对运动方向相反”不能等同于“与运动方向相反”
②滑动摩擦力可能起动力作用,也可能起阻力作用。
ⅲ滑动摩擦力的大小:F=μFN
说明:①FN两物体表面间的压力,性质上属于弹力,不是重力。应具体分析。
②μ与接触面的材料、接触面的粗糙程度有关,无单位。
③滑动摩擦力大小,与相对运动的速度大小无关。
ⅳ效果:总是阻碍物体间的相对运动,但并不总是阻碍物体的运动。
ⅴ.滚动摩擦:一个物体在另一个物体上滚动时产生的摩擦,滚动摩擦比滑动摩擦要小得多。
(2)静摩擦力:两相对静止的相接触的物体间,由于存在相对运动的趋势而产生的摩擦力。
说明:静摩擦力的作用具有相互性。
ⅰ静摩擦力的产生条件:A.两物体相接触;B.相接触面不光滑;C.两物体有形变;D.两物体有相对运动趋势。
ⅱ静摩擦力的方向:总跟接触面相切,并总跟物体的相对运动趋势相反。
说明:①运动的物体可以受到静摩擦力的作用。
②静摩擦力的方向可以与运动方向相同,可以相反,还可以成任一夹角θ。
③静摩擦力可以是阻力也可以是动力。
ⅲ静摩擦力的大小:两物体间的静摩擦力的取值范围0<F≤Fm,其中Fm为两个物体间的最大静摩擦力。静摩擦力的大小应根据实际运动情况,利用平衡条件或牛顿运动定律进行计算。
说明:①静摩擦力是被动力,其作用是与使物体产生运动趋势的力相平衡,在取值范围内是根据物体的“需要”取值,所以与正压力无关。
②最大静摩擦力大小决定于正压力与最大静摩擦因数效果:总是阻碍物体间的相对运动的趋势。
受力分析的程序是:
1. 根据题意选取适当的研究对象,选取研究对象的原则是要使对物体的研究处理尽量简便,研究对象可以是单个物体,也可以是几个物体组成的系统。
2. 把研究对象从周围的环境中隔离出来,按照先外力,再接触力的顺序对物体进行受力分析,并画出物体的受力示意图,这种方法常称为隔离法。
3. 对物体受力分析时,应注意一下几点:
(1)不要把研究对象所受的力与它对其它物体的作用力相混淆。
(2)对于作用在物体上的每一个力都必须明确它的来源,不能无中生有。
(3)分析的是物体受哪些“性质力”,不要把“效果力”与“性质力”重复分析。
力的合成
求几个共点力的合力,叫做力的合成。
(1) 力是矢量,其合成与分解都遵循平行四边形定则。
(2) 一条直线上两力合成,在规定正方向后,可利用代数运算。
(3) 互成角度共点力互成的分析
①两个力合力的取值范围是|F1-F2|≤F≤F1+F2
②共点的三个力,如果任意两个力的合力最小值小于或等于第三个力,那么这三个共点力的合力可能等于零。
③同时作用在同一物体上的共点力才能合成(同时性和同体性)。
④合力可能比分力大,也可能比分力小,也可能等于某一个分力。

一, 质点的运动(1)----- 直线运动
1)匀变速直线运动
1.平均速度V平=S / t (定义式) 2.有用推论Vt 2 –V0 2=2as
3.中间时刻速度 Vt / 2= V平=(V t + V o) / 2
4.末速度V=Vo+at

5.中间位置速度Vs / 2=[(V_o2 + V_t2) / 2] 1/2

6.位移S= V平t=V o t + at2 / 2=V t / 2 t

7.加速度a=(V_t - V_o) / t 以V_o为正方向,a与V_o同向(加速)a>0;反向则a<0

8.实验用推论ΔS=aT2 ΔS为相邻连续相等时间(T)内位移之差

9.主要物理量及单位:初速(V_o):m/ s 加速度(a):m/ s2 末速度(Vt):m/ s
时间(t):秒(s) 位移(S):米(m) 路程:米
速度单位换算: 1m/ s=3.6Km/ h

注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(V_t - V_o)/ t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/

2) 自由落体

1.初速度V_o =0 2.末速度V_t = g t

3.下落高度h=gt2 / 2(从V_o 位置向下计算)

4.推论V t2 = 2gh

注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。

(2)a=g=9.8≈10m/s2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。

3) 竖直上抛

1.位移S=V_o t – gt 2 / 2 2.末速度V_t = V_o – g t (g=9.8≈10 m / s2 )

3.有用推论V_t 2 - V_o 2 = - 2 g S 4.上升最大高度H_max=V_o 2 / (2g) (抛出点算起)

5.往返时间t=2V_o / g (从抛出落回原位置的时间)

注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。

平抛运动

1.水平方向速度V_x= V_o 2.竖直方向速度V_y=gt

3.水平方向位移S_x= V_o t 4.竖直方向位移S_y=gt2 / 2

5.运动时间t=(2S_y / g)1/2 (通常又表示为(2h/g) 1/2 )

6.合速度V_t=(V_x2+V_y2) 1/2=[ V_o2 + (gt)2 ] 1/2

合速度方向与水平夹角β: tgβ=V_y / V_x = gt / V_o

7.合位移S=(S_x2+ S_y2) 1/2 ,

位移方向与水平夹角α: tgα=S_y / S_x=gt / (2V_o)

注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(S_y)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。

2)匀速圆周运动

1.线速度V=s / t=2πR / T 2.角速度ω=Φ / t = 2π / T= 2πf
3.向心加速度a=V2 / R=ω2 R=(2π/T)2 R 4.向心力F心=mV2 / R=mω2 R=m(2π/ T)2 R
5.周期与频率T=1 / f 6.角速度与线速度的关系V=ωR

7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)

8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)

周期(T):秒(s) 转速(n):r / s 半径(R):米(m) 线速度(V):m / s

角速度(ω):rad / s 向心加速度:m / s2

注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。

3)万有引力

1.开普勒第三定律T2 / R3=K(4π2 / GM) R:轨道半径 T :周期 K:常量(与行星质量无关)

2.万有引力定律F=Gm_1m_2 / r2 G=6.67×10-11N·m2 / kg2方向在它们的连线上

3.天体上的重力和重力加速度GMm/R2=mg g=GM/R2 R:天体半径(m)

4.卫星绕行速度、角速度、周期 V=(GM/R)1/2
ω=(GM/R3)1/2 T=2π(R3/GM)1/2

5.第一(二、三)宇宙速度V_1=(g地
r地)1/2=7.9Km/s V_2=11.2Km/s V_3=16.7Km/s

6.地球同步卫星GMm / (R+h)2=m4π2 (R+h) / T2
h≈36000 km/h:距地球表面的高度

注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。

三、 力(常见的力、力矩、力的合成与分解)

1)常见的力
1.重力G=mg方向竖直向下g=9.8 m/s2 ≈10 m/s2 作用点在重心 适用于地球表面附近

2.胡克定律F=kX 方向沿恢复形变方向 k:劲度系数(N/m) X:形变量(m)

3.滑动摩擦力f=μN 与物体相对运动方向相反 μ:摩擦因数 N:正压力(N)

4.静摩擦力0≤f静≤fm 与物体相对运动趋势方向相反 fm为最大静摩擦力

5.万有引力F=G m_1m_2 / r2 G=6.67×10-11 N·m2/kg2 方向在它们的连线上

第三章 牛顿运动定律
1. 牛顿第二定律: F合= ma
注意: (1)同一性: 公式中的三个量必须是同一个物体的.
(2)同时性: F合与a必须是同一时刻的.
(3)瞬时性: 上一公式反映的是F合与a的瞬时关系.
(4)局限性: 只成立于惯性系中, 受制于宏观低速.
2. 整体法与隔离法:
整体法不须考虑整体(系统)内的内力作用, 用此法解题较为简单, 用于加速度和外力的计算. 隔离法要考虑内力作用, 一般比较繁琐, 但在求内力时必须用此法, 在选哪一个物体进行隔离时有讲究, 应选取受力较少的进行隔离研究.
3. 超重与失重:
当物体在竖直方向存在加速度时, 便会产生超重与失重现象. 超重与失重的本质是重力的实际大小与表现出的大小不相符所致, 并不是实际重力发生了什么变化,只是表现出的重力发生了变化.

第四章 物体平衡
1. 物体平衡条件: F合 = 0
2. 处理物体平衡问题常用方法有:
(1). 在物体只受三个力时, 用合成及分解的方法是比较好的. 合成的方法就是将物体所受三个力通过合成转化成两个平衡力来处理; 分解的方法就是将物体所受三个力通过分解转化成两对平衡力来处理.
(2). 在物体受四个力(含四个力)以上时, 就应该用正交分解的方法了. 正交分解的方法就是先分解而后再合成以转化成两对平衡力来处理的思想.

回答(2):

章节 名称 学案 课件 同步测试
第一章 力和物体的平衡
第1讲 力 常见的三种力
第2讲 力的合成与分解
第3讲 共点力作用下物体的平衡
第4讲 章实验:长度的测量 验证力的平行四边形定则
本章检测 / /
第二章 直线运动
第5讲 运动的描述 匀速直线运动
第6讲 匀变速直线运动的规律及其应用
第7讲 自由落体动力 竖直上抛运动
第8讲 本章实验:练习使用打点计时器 研究匀变速直线运动
本章检测 / /
第三章 牛顿运动定律
第9讲 牛顿第一、三定律 惯性
第10讲 牛顿第二定律
第11讲 牛顿运动定律的应用
本章检测 / /
第四章 曲线运动 万有引力定律
第12讲 运动的合成与分解 平抛运动
第13讲 匀速圆周运动
第14讲 万有引力定律 天体运动
第15讲 本章实验:研究平抛物体的运动
本章检测 / /
第五章 机械能
第16讲 功和功率
第17讲 动能 动能定理
第18讲 机械能守恒定律
第19讲 本章实验:验证机械能守恒定律
本章检测 / /
第六章 动量
第20讲 冲量和动量 动量定理
第21讲 动量守恒定律及其应用
第22讲 动量和能量
第23讲 本章实验:验证动量守恒定律
本章检测

回答(3):

高中物理‘加速度’,一般都是指‘匀加速度’,即,加速度是一个常量
1、加速度a与速度V的关系符合下式:V==at,t为时间变量,
我们有
a==V/t
表明,加速度a,就是速度V在单位时间内的平均变化率。
2、V==at是一个直线方程,它相当于数学上的y=kx(V相当于y,t相当于x,a相当于k)
数学知识指出,k是特定直线y=kx的斜率,
直线斜率有如下性质:
(1)不同直线(彼此不平行)的斜率,数值不等
(2)同一直线上斜率的数值,处处相等(与y和x的数值无关)
(3)直线斜率的数值,可以通过y和x的数值来求算:
k==y/x
(4)虽然k==y/x,但是,y==0,x==0,k不为零。

仿此,
(1)不同运动的加速度,数值不等
(2)同一运动的加速度数值,处处相等(与V和t的数值无关)
(3)运动的加速度数值,可以通过V和t的数值来求算:
==V/t
(4)虽然a==V/t,但是V==0(由静止开始云动),t==0,但a不为零。
.变加速运动中的物体加速度在减小而速度却在增大,以及加速度不为零的物体速度大小却可能不变.(这两句怎么理解啊??举几个例子?
变加速运动中加速度减小速度当然是增大了,只有加速度的方向与速度方向一致那么速度就是增加的,与加速度大小没有关系,例如从一个半圆形轨道上滑下的一个木块,它沿水平方向的加速度是减小的,但速度是增加的。
加速度在与速度方向在同一条直线上时才改变速度的大小,
有加速度那么速度就得改变,如果想让速度大小不变,那么就得让它的方向改变,如匀速圆周运动,加速度的大小不变且不为0,速度方向不断改变但大小不变。
刹车方面应用题:汽车以15米每秒的速度行驶,司机发现前方有危险,在0.8s之后才能作出反应,马上制动,这个时间称为反应时间.若汽车刹车时能产生最大加速度为5米每二次方秒,从汽车司机发现前方有危险马上制动刹车到汽车完全停下来,汽车所通过的距离叫刹车距离.问该汽车的刹车距离为多少?(最好附些过程,谢谢)
15米/秒 加速度是5米/二次方秒 那么停止需要3秒钟
3秒通过的路程是s=15*3-1/2*5*3^2=22.5
反应时间是0.8秒 s=0.8*15=12
总的距离就是22.5+12=34.5
原先“直线运动”是放在“力”之后的,在力这一章先讲矢量及其算法,然后是利用矢量运算法则学习力的计算。现在倒过来了。建议你还是先学一下这这章内容。
要理解“加速度”,首先要理解“位移”和“速度”概念,位移就是物体运动前后位置的变化,即由开始位置指向结束位置的矢量。
速度就是物体位移(物体位置的变化量)与物体运动所用时间的比值,如果物体不是匀速运动(叫变速运动),速度就又有瞬时速度和平均速度之分,平均速度就是作变速运动的物体在某段时间内(或某段位移上),位移与时间的比值;瞬时速度就是物体在某一点或某一时刻的速度。

加速度就是物体速度的变化量与物体速度变化所用时间的比值,如果物体不是匀加速运动(叫变加速运动),加速度就又有瞬时加速度和平均加速度之分,平均加速度就是作变速运动的物体在某段时间内(或某段位移上),速度变化量与时间的比值;瞬时加速度就是物体在某一点或某一时刻的加速度。
对比上面速度与加速度的概念,你就会容易理解一点的。