证明相交弦定理的几种方法 求!!!!!

2024-11-22 20:46:09
推荐回答(2个)
回答(1):

1、证明:连结AC,BD

由圆周角定理的推论,得∠A=∠D,∠C=∠B。(圆周角推论2: 同(等)弧所对圆周角相等.)

∴△PAC∽△PDB

∴PA∶PD=PC∶PB,PA·PB=PC·PD

注:其逆定理可作为证明圆的内接四边形的方法. P点若选在圆内任意一点更具一般性。其逆定理也可用于证明四点共圆。

2、圆内两弦AB、CD交于圆内一点P,则有PA×PB=PC×PD

可推广到交点P在圆外的情况:若AB、CD的延长线交于圆外的点P,则仍有此结论成立,即有:PA×PB=PC×PD

扩展资料

相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们的推论统称为圆幂定理。一般用于求线段长度。当P点在圆内时称为相交弦定理,当P点在圆上时称为切割线定理,当P点在圆外时称为割线定理。三条定理统称为圆幂定理。其中|OP²-R²|称为P点对圆O的幂。(R为圆O的半径)

如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项。

参考资料来源:百度百科-相交弦定理

回答(2):

证明:连结AC,BD,由圆周角定理的推论,得∠A=∠D,∠C=∠B.(圆周角推论2: 同(等)弧所对圆周角相等.) ∴△PAC∽△PDB,∴PA∶PD=PC∶PB,PA·PB=PC·PD